Long-Term Retention of Gait Stability Improvements

2005 ◽  
Vol 94 (3) ◽  
pp. 1971-1979 ◽  
Author(s):  
T. Bhatt ◽  
Y.-C. Pai

Evidence of long-term modification of behavior—in particular, gait alterations in response to repeated exposure to slips—within the locomotor-balance control system is limited. The purpose of this study was to examine whether improvements in fall-resisting behavior as reflected by improvements in gait stability could be retained on a long-term basis. Eight healthy young subjects were exposed to a block of repeated slip trials during a single acquisition session consisting of five repeated slip exposures; the same subjects were then re-tested using the same protocol at a minimum of 12 mo later. Pre- and postslip gait stability for all slip trials was measured at touchdown (slipping limb) and liftoff (contralateral limb) based on the center of mass state (i.e., its instantaneous position and velocity) relative to the base of support (BOS) and the predicted thresholds for backward loss of balance. In the acquisition session, subjects were able to increase pre- and postslip stability, which significantly correlated with a decrease in the incidence of balance loss from 100% (1st slip) to 0% (5th slip). All subjects exhibited a similar balance loss on the first slip of the follow-up session. Nonetheless, subjects were able to retain the acquired preslip stability with feedforward control on the first slip but not the postslip stability related to the reactive response. Also, the subjects demonstrated a faster re-acquisition, with only one balance loss on the second slip of the follow-up session, as compared with seven balance losses on the acquisition session. Such rapid improvements were achieved by the significantly greater increase in post- compared with preslip stability; this increase was for the most part, a consequence of reductions in slip intensity (i.e., the peak BOS velocity). We concluded that a single acquisition session could only produce limited long-term retainable effects within the locomotor-balance control system. It appeared, however, that the CNS was still primed to more rapidly update its internal representation of gait stability during re-acquisition.

2006 ◽  
Vol 95 (5) ◽  
pp. 2913-2922 ◽  
Author(s):  
T. Bhatt ◽  
E. Wang ◽  
Y.-C. Pai

Stability improvements made in a single acquisition session with merely five slips in walking are sufficient to prevent backward balance loss (BLOB) at the end of session, but not after 12 mo. The purpose of this study was to determine whether the effect of an enhanced single acquisition session would be retainable if tested sooner, at intervals of ≤4 mo. Twenty-four young subjects were exposed to blocks of slip, nonslip, and both types of trials during walking at their preferred speed in the acquisition session. In each of the four follow-up sessions around 1 wk, 2 wk, 1 mo, and 4 mo later, these same subjects experienced only a single slip after eight to 13 unperturbed walking trials in an otherwise identical setup. Gait stability was obtained as the shortest distance between the measured center of mass (COM) state (position and velocity) and the mathematically predicted threshold for BLOB at pre- and postslip, corresponding to the instants of touchdown of the slipping limb and liftoff of the contralateral limb, respectively. During the acquisition session, pre- and postslip stability improved significantly, resulting in a reduction of BLOB from 100% in the first slip (S1) to 0% in the last slip (S24), with improvements converging to a steady state, that enabled all of the subjects to avoid BLOB, regardless of whether a slip occurred. During retest sessions, subjects' preslip stability was not different from that in S24, but was greater than that in S1. Their postslip stability was also greater than that in S1 but less than that in S24, resulting in BLOB at a 40% level. No difference was found in any of these aspects between each follow-up session. These adaptive changes were associated with a range of individual differences, varying from no detectable deterioration in all aspects ( n = 8) to a consistent BLOB in all follow-ups ( n = 3). Our findings demonstrated the extent of plasticity of the CNS, characterized by rapid acquisition of a stable COM state under unpredictable slip conditions and retention of such improvements for months, resulting in a reduced occurrence of unintended backward falling.


2003 ◽  
Vol 90 (2) ◽  
pp. 755-762 ◽  
Author(s):  
Y.-C. Pai ◽  
J. D. Wening ◽  
E. F. Runtz ◽  
K. Iqbal ◽  
M. J. Pavol

Human upright posture is inherently unstable. To counter the mechanical effect of a large-scale perturbation such as a slip, the CNS can make adaptive adjustments in advance to improve the stability of the body center-of-mass (COM) state (i.e., its velocity and position). Such feedforward control relies on an accurate internal representation of stability limits, which must be a function of anatomical, physiological, and environmental constraints and thus should be computationally deducible based on physical laws of motion. We combined an empirical approach with mathematical modeling to verify the hypothesis that an adaptive improvement in feedforward control of COM stability correlated with a subsequent reduction in balance loss. Forty-one older adults experienced a slip during a sit-to-stand task in a block of slip trials, followed by a block of nonslip trials and a re-slip trial. Their feedforward control of COM stability was quantified as the shortest distance between its state measured at seat-off ( slip onset) and the mathematically predicted feasible stability region boundary. With adaptation to repeated slips, older adults were able to exponentially reduce their incidence of falls and backward balance loss, attributable significantly to their improvement in feedforward control of stability. With exposure to slip and nonslip conditions, subjects began to select “optimal” movements that improved stability under both conditions, reducing the reliance on prior knowledge of forthcoming perturbations. These results can be fully accounted for when we assume that an internal representation of the COM stability limits guides the adaptive improvements in the feedforward control of stability.


2020 ◽  
Vol 19 (2) ◽  
pp. 104
Author(s):  
Jean Leite Cruz ◽  
Milena Razuk ◽  
Victor Anthony Mendes Ferreira ◽  
Leonardo Araujo Vieira ◽  
Natalia Madalena Rinaldi

Different motor interventions have been widely investigated in balance control in elderly. However, it is not yet clear which type of motor intervention promotes improvements in balance control systems in the elderly. The aim of this study was to compare different motor interventions of the balance control system in elderly. Fifty-six elderly people participated in the study, distributed in sedentary group (SED), gymnastic group (GG), yoga group (GI) and stretching group (GA). Participants were evaluated using the Balance Evaluation System Test (BESTest) tool, designed to evaluate six items of balance control systems. The variables analyzed in the study were the scores obtained in each of the BESTest items. The results showed that GG and GI presented higher values in BESTest compared to the SED group. Even more, for the item gait stability and stability limits presented higher values compared to the other BESTest items. The conclusion of the study is that elderly gymnastics and yoga practitioners, modalities offered by the Exercise Orientation Service (SOE) can promote benefits to the balance control system in elderly.Keywords: BESTest, balance, elderly, motor intervention.


2019 ◽  
Vol 42 ◽  
Author(s):  
John P. A. Ioannidis

AbstractNeurobiology-based interventions for mental diseases and searches for useful biomarkers of treatment response have largely failed. Clinical trials should assess interventions related to environmental and social stressors, with long-term follow-up; social rather than biological endpoints; personalized outcomes; and suitable cluster, adaptive, and n-of-1 designs. Labor, education, financial, and other social/political decisions should be evaluated for their impacts on mental disease.


1999 ◽  
Vol 173 ◽  
pp. 189-192
Author(s):  
J. Tichá ◽  
M. Tichý ◽  
Z. Moravec

AbstractA long-term photographic search programme for minor planets was begun at the Kleť Observatory at the end of seventies using a 0.63-m Maksutov telescope, but with insufficient respect for long-arc follow-up astrometry. More than two thousand provisional designations were given to new Kleť discoveries. Since 1993 targeted follow-up astrometry of Kleť candidates has been performed with a 0.57-m reflector equipped with a CCD camera, and reliable orbits for many previous Kleť discoveries have been determined. The photographic programme results in more than 350 numbered minor planets credited to Kleť, one of the world's most prolific discovery sites. Nearly 50 per cent of them were numbered as a consequence of CCD follow-up observations since 1994.This brief summary describes the results of this Kleť photographic minor planet survey between 1977 and 1996. The majority of the Kleť photographic discoveries are main belt asteroids, but two Amor type asteroids and one Trojan have been found.


2019 ◽  
Vol 4 (6) ◽  
pp. 1418-1422
Author(s):  
Bre Myers ◽  
J. Andrew Dundas

Purpose The primary aim of the current article is to provide a brief review of the literature regarding the effects of noise exposure on the vestibular and balance control systems. Although the deleterious effects of noise on the auditory system are widely known and continue to be an active area of research, much less is known regarding the effects of noise on the peripheral vestibular system. Audiologists with working knowledge of how both systems interact and overlap are better prepared to provide comprehensive care to more patients as assessment of both the auditory and vestibular systems has been in the audiologists' scope of practice since 1992. Method A narrative review summarizes salient findings from the archival literature. Results Temporary and permanent effects on vestibular system function have been documented in multiple studies. Hearing conservation, vestibular impairment, and fall risk reduction may be more intimately related than previously considered. Conclusions A full appreciation of both the vestibular and auditory systems is necessary to address the growing and aging noise-exposed population. More cross-system studies are needed to further define the complex relationship between the auditory and vestibular systems to improve comprehensive patient care.


2001 ◽  
Vol 120 (5) ◽  
pp. A397-A397
Author(s):  
M SAMERAMMAR ◽  
J CROFFIE ◽  
M PFEFFERKORN ◽  
S GUPTA ◽  
M CORKINS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document