balance loss
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 28 (1) ◽  
pp. 120-129
Author(s):  
Yeganeh Basiri ◽  
Nematollah Etemadi ◽  
Mahdi Alizadeh ◽  
Ali Nikbakht ◽  
Ghodratollah Saeidi

Abstract Eremurus spectabilis is a new, commercially valuable specialty cut flower, but little is known about the applicable treatments to extend the vase-life and maintaining the ornamental quality of this flower. Therefore, the present study was aimed at investigating the impacts of nano-silver, essential oils, and chemical treatments on keeping ornamental quality and vase-life of cut inflorescences of Foxtail lily. The cut inflorescences were placed in different vase solutions containing salicylic acid (100 and 200 mg L-1), methyl jasmonate (25 and 50 mg L-1), silver thiosulfate (0.1 mM) plus isothiazolinone (0.001 and 0.005 mL L-1), nano-silver (5, 10, and 15 mg L-1), thymol (75 and 120 mg L-1), and menthol (75 and 120 mg L-1), which were applied as continuous and pulsing methods. According to the results, all treatments considerably improved the post-harvest performance of Foxtail lily cut flowers. Although there were no significant differences among nano-silver (NS) treatments, the cut inflorescences kept in vase solution containing 10 mg L-1 of NS exhibited the longest vase life (~14 days) and the best ornamental quality. Nano-silver treatment followed by silver-thiosulfate significantly improved solution uptake by flowering inflorescences, thereby delaying the water balance loss and keeping relative fresh weight. Furthermore, 50 mg L-1 methyl jasmonate- and 75 mg L-1 menthol-treated cut inflorescences exhibited significantly higher vase-life longevity by ~ 6 and 4 days, total soluble solutes by 28.38% and 19.12%, and solution uptake rate by 76.46% and 140.6%, respectively, as compared to control. Overall, 10 mg L-1 NS can be recommended as a commercial preservative solution to delay flower senescence and improve the vase life and keeping the quality of foxtail cut inflorescence.


Author(s):  
Iris C. Levine ◽  
Roger E. Montgomery ◽  
Alison C. Novak

Objective This study evaluated the hazard (risk of unrecovered balance loss and hazardous fall) and strategies associated with grab bar use, compared to no grab bar use, during unexpected balance loss initiated whilst exiting a bathtub. Background While independent bathing is critical for maintaining self-sufficiency, injurious falls during bathing transfer tasks are common. Grab bars are recommended to support bathing tasks, but no evidence exists regarding fall prevention efficacy. Method Sixty-three adults completed a hazardous bathtub transfer task, experiencing an unpredictable external balance perturbation while stepping from a slippery bathtub to a dry surface. Thirty-two were provided a grab bar, while 31 had no grab bar available. Slips and grab bar use were recorded via four video cameras. Slip occurrence and strategy were identified by two independent video coders. Results Participants who had a grab bar were 75.8% more likely to recover their balance during the task than those who did not have a grab bar. Successful grab bar grasp was associated with balance recovery in all cases. Attempts to stabilize using other environmental elements, or using internal strategies only, were less successful balance recovery strategies. Grab bar presence appeared to cue use of the environment for stability. Proactive grasp and other strategies modified grasping success. Conclusion Grab bars appear to provide effective support for recovery from unexpected balance loss. Grab bar presence may instigate development of fall prevention strategies prior to loss of balance. Application Bathroom designs with grab bars may reduce frequency of fall-related injuries during bathing transfer tasks.


Author(s):  
Lili Fan ◽  
Hongwei Zhao ◽  
Ying Li ◽  
Shen Li ◽  
Rui Zhou ◽  
...  
Keyword(s):  

2021 ◽  
pp. 1-12
Author(s):  
Diane D. Allen ◽  
Jessica Gadayan ◽  
Rebecca Hughes ◽  
Christine Magdalin ◽  
Catherine Jang ◽  
...  

BACKGROUND: Multiple sclerosis (MS) and Parkinson’s disease (PD) may affect balance differently. However, no studies have compared loss of balance (LOB) patterns following multi-directional perturbations. OBJECTIVE: 1) determine reliability of LOB ratings following standardized manual perturbations; 2) compare LOB ratings in MS, PD, and healthy control (HC) groups following perturbations at upper/lower torso, in anterior/posterior, right/left, and rotational directions. METHODS: 1) reviewers rated videotaped LOB following perturbations applied by 4 clinicians in 6–10 HCs. 2) three groups (64 MS, 42 PD and 32 HC) received perturbations. LOB ratings following perturbations were analyzed using two-factor mixed ANOVAs for magnitude and prevalence. RESULTS: 1) LOB ratings showed moderate to good ICC and good to excellent agreement. 2) MS group showed greater magnitude and prevalence of LOB than PD or HC groups (p <  .001). All groups showed greater LOB from right/left versus anterior/posterior perturbations (p <  .01). PD showed greater LOB from perturbations at upper versus lower torso; MS and HC showed greater LOB from posterior versus anterior perturbations. CONCLUSIONS: Our reliable rating scale showed differences in patterns of LOB following manual perturbations in MS, PD, and HC. Clinically accessible and reliable assessment of LOB could facilitate targeted perturbation-based interventions and reduce falls in vulnerable populations.


2021 ◽  
Author(s):  
Maud van den Bogaart ◽  
Sjoerd M. Bruijn ◽  
Joke Spildooren ◽  
Jaap H. van Dieën ◽  
Pieter Meyns

AbstractDuring standing, posture can be controlled by accelerating the Center of Mass (CoM) through shifting the center of pressure (CoP) within the base of support by applying ankle moments (“CoP mechanism”), or through the “counter-rotation mechanism”, i.e., changing the angular momentum of segments around the CoM to change the direction of the ground reaction force. Postural control develops over the lifespan; at both the beginning and the end of the lifespan adequate postural control appears more challenging. In this study, we aimed to assess mediolateral balance performance and the related use of the postural control mechanisms in children, older adults and young adults when standing on different (unstable) surfaces. Sixteen pre-pubertal children (6-9y), 17 young adults (18-24y) and eight older adults (65-80y) performed bipedal upright standing trials of 16 seconds on a rigid surface and on three balance boards that could freely move in the frontal plane, varying in height (15-19 cm) of the surface of the board above the point of contact with the floor. Full body kinematics (16 segments, 48 markers, using SIMI 3D-motion analysis system (GmbH) and DeepLabCut and Anipose) were retrieved. Performance related outcome measures, i.e., the number of trials with balance loss and the Root Mean Square (RMS) of the time series of the CoM acceleration, the contributions of the CoP mechanism and the counter-rotation mechanism to the CoM acceleration in the frontal plane and selected kinematic measures, i.e. the orientation of the board and the head and the Mean Power Frequency (MPF) of the balance board orientation and the CoM acceleration were determined. Balance loss only occurred when standing on the highest balance board, twice in one older adult once in one young adult. In children and older adults, the RMS of the CoM accelerations were larger, corresponding to poorer balance performance. Across age groups and conditions, the contribution of the CoP mechanism to the total CoM acceleration was much larger than that of the counter-rotation mechanisms, ranging from 94%-113% vs 23%-38% (with totals higher than 100% indicating opposite effects of both mechanisms). Deviations in head orientation were small compared to deviations in balance board orientation. We hypothesize that the CoP mechanism is dominant, since the counter-rotation mechanism would conflict with stabilizing the orientation of the head in space.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255597
Author(s):  
Abdelrahman Zaroug ◽  
Alessandro Garofolini ◽  
Daniel T. H. Lai ◽  
Kurt Mudie ◽  
Rezaul Begg

The forecasting of lower limb trajectories can improve the operation of assistive devices and minimise the risk of tripping and balance loss. The aim of this work was to examine four Long Short Term Memory (LSTM) neural network architectures (Vanilla, Stacked, Bidirectional and Autoencoders) in predicting the future trajectories of lower limb kinematics, i.e. Angular Velocity (AV) and Linear Acceleration (LA). Kinematics data of foot, shank and thigh (LA and AV) were collected from 13 male and 3 female participants (28 ± 4 years old, 1.72 ± 0.07 m in height, 66 ± 10 kg in mass) who walked for 10 minutes at preferred walking speed (4.34 ± 0.43 km.h-1) and at an imposed speed (5km.h-1, 15.4% ± 7.6% faster) on a 0% gradient treadmill. The sliding window technique was adopted for training and testing the LSTM models with total kinematics time-series data of 10,500 strides. Results based on leave-one-out cross validation, suggested that the LSTM autoencoders is the top predictor of the lower limb kinematics trajectories (i.e. up to 0.1s). The normalised mean squared error was evaluated on trajectory predictions at each time-step and it obtained 2.82–5.31% for the LSTM autoencoders. The ability to predict future lower limb motions may have a wide range of applications including the design and control of bionics allowing improved human-machine interface and mitigating the risk of falls and balance loss.


Author(s):  
Vicki Komisar ◽  
Alison C. Novak

Objective To characterize the effect of handrail height and age on trunk and shoulder kinematics, and concomitant handrail forces, on balance recovery reactions during gait. Background Falls are the leading cause of unintentional injury in adults in North America. Handrails can significantly enhance balance recovery and help individuals to avoid falls, provided that their design allows users across the lifespan to reach and grasp the rail after balance loss, and control their trunk by applying hand-contact forces to the rail. However, the effect of handrail height and age on trunk and shoulder kinematics when recovering from perturbations during gait is unknown. Method Fourteen younger and 13 older adults experienced balance loss (sudden platform translations) while walking beside a height-adjustable handrail. Handrail height was varied from 30 to 44 inches (76 to 112 cm). Trunk and shoulder kinematics were measured via 3D motion capture; applied handrail forces were collected from load cells mounted to the rail. Results As handrail height increased (up to 42 inches/107 cm), peak trunk angular displacement and velocity generally decreased, while shoulder elevation angles during reaching and peak handrail forces did not differ significantly between 36 and 42 inches (91 and 107 cm). Age was associated with reduced peak trunk angular displacements, but did not affect applied handrail forces. Conclusion Higher handrails (up to 42 inches) may be advantageous for trunk control when recovering from destabilizations during gait. Application Our results can inform building codes, workplace safety standards, and accessibility standards, for safer handrail design.


2021 ◽  
Vol 76 ◽  
pp. 102769
Author(s):  
Julian Werth ◽  
Matthias König ◽  
Gaspar Epro ◽  
John Seeley ◽  
Wolfgang Potthast ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zejin Wang ◽  
Jing Liu ◽  
Xi Chen ◽  
Guoqing Li ◽  
Hua Han

Abstract Background Microscopic imaging is a crucial technology for visualizing neural and tissue structures. Large-area defects inevitably occur during the imaging process of electron microscope (EM) serial slices, which lead to reduced registration and semantic segmentation, and affect the accuracy of 3D reconstruction. The continuity of biological tissue among serial EM images makes it possible to recover missing tissues utilizing inter-slice interpolation. However, large deformation, noise, and blur among EM images remain the task challenging. Existing flow-based and kernel-based methods have to perform frame interpolation on images with little noise and low blur. They also cannot effectively deal with large deformations on EM images. Results In this paper, we propose a sparse self-attention aggregation network to synthesize pixels following the continuity of biological tissue. First, we develop an attention-aware layer for consecutive EM images interpolation that implicitly adopts global perceptual deformation. Second, we present an adaptive style-balance loss taking the style differences of serial EM images such as blur and noise into consideration. Guided by the attention-aware module, adaptively synthesizing each pixel aggregated from the global domain further improves the performance of pixel synthesis. Quantitative and qualitative experiments show that the proposed method is superior to the state-of-the-art approaches. Conclusions The proposed method can be considered as an effective strategy to model the relationship between each pixel and other pixels from the global domain. This approach improves the algorithm’s robustness to noise and large deformation, and can accurately predict the effective information of the missing region, which will greatly promote the data analysis of neurobiological research.


Sign in / Sign up

Export Citation Format

Share Document