scholarly journals Song Decrystallization in Adult Zebra Finches Does Not Require the Song Nucleus NIf

2009 ◽  
Vol 102 (2) ◽  
pp. 979-991 ◽  
Author(s):  
Arani Roy ◽  
Richard Mooney

In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section–induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Kosuke Hamaguchi ◽  
Katherine A Tschida ◽  
Inho Yoon ◽  
Bruce R Donald ◽  
Richard Mooney

Songbirds use auditory feedback to learn and maintain their songs, but how feedback interacts with vocal motor circuitry remains unclear. A potential site for this interaction is the song premotor nucleus HVC, which receives auditory input and contains neurons (HVCX cells) that innervate an anterior forebrain pathway (AFP) important to feedback-dependent vocal plasticity. Although the singing-related output of HVCX cells is unaltered by distorted auditory feedback (DAF), deafening gradually weakens synapses on HVCX cells, raising the possibility that they integrate feedback only at subthreshold levels during singing. Using intracellular recordings in singing zebra finches, we found that DAF failed to perturb singing-related synaptic activity of HVCX cells, although many of these cells responded to auditory stimuli in non-singing states. Moreover, in vivo multiphoton imaging revealed that deafening-induced changes to HVCX synapses require intact AFP output. These findings support a model in which the AFP accesses feedback independent of HVC.


2004 ◽  
Vol 58 (4) ◽  
pp. 442-454 ◽  
Author(s):  
Luisa L. Scott ◽  
Tryambak D. Singh ◽  
Ernest J. Nordeen ◽  
Kathy W. Nordeen

2005 ◽  
Vol 93 (4) ◽  
pp. 2157-2166 ◽  
Author(s):  
Jessica A. Cardin ◽  
Jonathan N. Raksin ◽  
Marc F. Schmidt

Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.


Author(s):  
Songhua Wang ◽  
Shaoyi Liu ◽  
Congshu Liao ◽  
Wei Meng ◽  
Dongfeng LI

Songbirds, such as zebra finches, contribute to explore behaviors underlying neural activities. Birdsong is controlled by the song system. The robust nucleus of the arcopallium (RA) is a key nucleus for producing birdsong in the song system. The RA receives dopaminergic (DArgic) inputs from the midbrain, however, the function of these inputs involved excitatory synaptic transmission is still unclear. Excitatory synaptic transmission is critical in the signal integration activities of the brain. We examined the effects of dopamine (DA) on excitatory synaptic transmission of the projection neurons in the RA of adult male zebra finches, using whole-cell recording technique. We found that DA (100 μM) decreases the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs/mEPSCs). In our further study, these effects of DA were reversed by the D1-like dopamine receptor (D1R) antagonist and stimulated by a D1R agonist. However, a D2-like dopamine receptor (D2R) has no influence on the effects of DA. These results demonstrate that DA can inhibit excitatory synaptic transmission mainly via activation of D1R in adult male zebra finches.


2015 ◽  
Author(s):  
Songhua Wang ◽  
Shaoyi Liu ◽  
Congshu Liao ◽  
Wei Meng ◽  
Dongfeng LI

Songbirds, such as zebra finches, contribute to explore behaviors underlying neural activities. Birdsong is controlled by the song system. The robust nucleus of the arcopallium (RA) is a key nucleus for producing birdsong in the song system. The RA receives dopaminergic (DArgic) inputs from the midbrain, however, the function of these inputs involved excitatory synaptic transmission is still unclear. Excitatory synaptic transmission is critical in the signal integration activities of the brain. We examined the effects of dopamine (DA) on excitatory synaptic transmission of the projection neurons in the RA of adult male zebra finches, using whole-cell recording technique. We found that DA (100 μM) decreases the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs/mEPSCs). In our further study, these effects of DA were reversed by the D1-like dopamine receptor (D1R) antagonist and stimulated by a D1R agonist. However, a D2-like dopamine receptor (D2R) has no influence on the effects of DA. These results demonstrate that DA can inhibit excitatory synaptic transmission mainly via activation of D1R in adult male zebra finches.


2003 ◽  
Vol 89 (3) ◽  
pp. 1688-1701 ◽  
Author(s):  
Peter L. Rauske ◽  
Stephen D. Shea ◽  
Daniel Margoliash

Sensory systems may adapt to behavioral requirements through state-dependent changes. In the forebrain song-system nucleus HVc of zebra finches, state-dependent auditory responses have been described in multiunit recordings. Here we report on behavioral state-dependent changes in the activity of distinct HVc neuronal classes. HVc projection neurons were identified by electrically stimulating HVc's target nuclei, the robust nucleus of the archistriatum and Area X, in anesthetized zebra finches. Projection neurons and two classes of putative interneurons could be distinguished on the basis of extracellular spike waveforms, with the first two factors of a principal components analysis accounting for 81% of the variance in spike morphometric values. Spike width was the best single variable for distinguishing among the neuronal classes. Putative interneurons had much higher firing rates spontaneously and in response to song than did projection neurons, which had extremely low spontaneous rates and phasic responses to song. Recordings from HVc in behaving animals were dominated by the two classes of putative interneurons. Both classes showed strong, selective, and temporally similar auditory responses during sleep, but only one class of interneurons reliably maintained auditory responses on waking. These responses were weaker and less selective than those seen during sleep. The observation that HVc auditory responsiveness in awake zebra finches is restricted to some classes of neurons may help explain prior multiunit results that suggested nearly complete suppression of HVc auditory responses in awake birds. We propose that the heterogeneous effects of behavioral state on distinct subpopulations of HVc neurons allow HVc to participate in multiple roles during song production, conspecific song recognition, and possibly memory consolidation during sleep.


2012 ◽  
Vol 107 (6) ◽  
pp. 1621-1631 ◽  
Author(s):  
L. Remage-Healey ◽  
S. M. Dong ◽  
A. Chao ◽  
B. A. Schlinger

Recent evidence shows that brain-derived steroids such as estrogens (“neuroestrogens”) are controlled in a manner very similar to traditional neurotransmitters. The advent of in vivo microdialysis for steroids in songbirds has provided new information about the spatial and temporal dynamics of neuroestrogen changes in a region of the auditory cortex, the caudomedial nidopallium (NCM). Here, experiments using in vivo microdialysis demonstrate that neuroestradiol (E2) fluctuations occur within the auditory NCM during presentation of naturalistic auditory and visual stimuli in males but only to the presentation of auditory stimuli in females. These changes are acute (within 30 min) and appear to be specific to the NCM, because similar treatments elicit no changes in E2 in a nearby mesopallial region or in circulating plasma. Further experiments coupling in vivo steroid microdialysis with extracellular recordings in NCM show that neuroestrogens rapidly boost auditory responses to song stimuli in females, similar to recent observations in males. We also find that the rapid actions of estradiol on auditory responses are fully mimicked by the cell membrane-impermeable estrogen biotinylestradiol, consistent with acute estrogen actions at the neuronal membrane. Thus we conclude that local and acute E2 flux is regulated by convergent multimodal sensory input, and that this regulation appears to be sex-specific. Second, rapid changes in local E2 levels in NCM have consequences for the modulation of auditory processing in females and males. Finally, the rapid actions of neuroestrogens on NCM auditory processing appear to be mediated by a nonclassical, membrane-bound estrogen receptor.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jannath Begum-Ali ◽  
◽  
Anna Kolesnik-Taylor ◽  
Isabel Quiroz ◽  
Luke Mason ◽  
...  

Abstract Background Sensory modulation difficulties are common in children with conditions such as Autism Spectrum Disorder (ASD) and could contribute to other social and non-social symptoms. Positing a causal role for sensory processing differences requires observing atypical sensory reactivity prior to the emergence of other symptoms, which can be achieved through prospective studies. Methods In this longitudinal study, we examined auditory repetition suppression and change detection at 5 and 10 months in infants with and without Neurofibromatosis Type 1 (NF1), a condition associated with higher likelihood of developing ASD. Results In typically developing infants, suppression to vowel repetition and enhanced responses to vowel/pitch change decreased with age over posterior regions, becoming more frontally specific; age-related change was diminished in the NF1 group. Whilst both groups detected changes in vowel and pitch, the NF1 group were largely slower to show a differentiated neural response. Auditory responses did not relate to later language, but were related to later ASD traits. Conclusions These findings represent the first demonstration of atypical brain responses to sounds in infants with NF1 and suggest they may relate to the likelihood of later ASD.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 706
Author(s):  
Irene Rubia-Rodríguez ◽  
Antonio Santana-Otero ◽  
Simo Spassov ◽  
Etelka Tombácz ◽  
Christer Johansson ◽  
...  

The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.


Sign in / Sign up

Export Citation Format

Share Document