Quantitative Characterization of Disparity Tuning in Ventral Pathway Area V4

2005 ◽  
Vol 94 (4) ◽  
pp. 2726-2737 ◽  
Author(s):  
David A. Hinkle ◽  
Charles E. Connor

We performed a quantitative characterization of binocular disparity-tuning functions in the ventral (object-processing) pathway of the macaque visual cortex. We measured responses of 452 area V4 neurons to stimuli with disparities ranging from −1.0 to +1.0°. Asymmetric Gaussian functions fit the raw data best (median R = 0.90), capturing both the modal components (local peaks in the −1.0 to +1.0° range) and the monotonic components (linear or sigmoidal dependency on disparity) of the tuning patterns. Values derived from the asymmetric Gaussian fits were used to characterize neurons on a modal × monotonic tuning domain. Points along the modal tuning axis correspond to classic tuned excitatory and inhibitory patterns; points along the monotonic axis correspond to classic near and far patterns. The distribution on this domain was continuous, with the majority of neurons exhibiting a mixed modal/monotonic tuning pattern. The distribution in the modal dimension was shifted toward excitatory patterns, consistent with previous results in other areas. The distribution in the monotonic dimension was shifted toward tuning for crossed disparities (corresponding to stimuli nearer than the fixation plane). This could reflect a perceptual emphasis on objects or object parts closer to the observer. We also found that disparity-tuning strength was positively correlated with orientation-tuning strength and color-tuning strength, and negatively correlated with receptive field eccentricity.

1993 ◽  
Vol 70 (3) ◽  
pp. 909-919 ◽  
Author(s):  
B. C. Motter

1. The activity of single neurons was recorded in Macaca mulatta monkeys while they performed tasks requiring them to select a cued stimulus from an array of three to eight stimuli and report the orientation of that stimulus. Stimuli were presented in a circular array centered on the fixation target and scaled to place a single stimulus element within the receptive field of the neuron under study. The timing of the cuing event permitted the directing of visual attention to the spatial location of the correct stimulus before its presentation. 2. The effects of focal attention were examined in cortical visual areas V1, V2, and V4, where a total of 672 neurons were isolated with complete studies obtained for 94 V1, 74 V2, and 74 V4 neurons with receptive-field center eccentricities in the range 1.8-8 degrees. Under certain conditions, directed focal attention results in changes in the response of V1, V2, and V4 neurons to otherwise identical stimuli at spatially specific locations. 3. More than one-third of the neurons in each area displayed differential sensitivity when attention was directed toward versus away from the spatial location of the receptive field just before and during stimulus presentation. Both relative increases and decreases in neural activity were observed in association with attention directed at receptive-field stimuli. 4. The presence of multiple competing stimuli in the visual field was a major factor determining the presence or absence of differential sensitivity. About two-thirds of the neurons that were differentially sensitive to the attending condition in the presence of competing stimuli were not differentially sensitive when single stimuli were presented in control studies. For V1 and V2 neurons the presence of only a few (3-4) competing stimuli was sufficient for a majority of the neurons studied; a majority of the V4 neurons required six to eight stimuli in the array before significant differences between attending conditions occurred. 5. For V1 and V2 neurons the neuronal sensitivity differences between attending conditions were observed primarily at or near the peak of the orientation tuning sensitivity for each neuron; the differences were evident over a broader range of orientations in V4 neurons. 6. In conclusion, neural correlates of focal attentive processes can be observed in visual cortical processing in areas V1 and V2 as well as area V4 under conditions that require stimulus feature analysis and selective spatial processing within a field of competing stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 87 (4) ◽  
pp. 1960-1973 ◽  
Author(s):  
Masayuki Watanabe ◽  
Hiroki Tanaka ◽  
Takanori Uka ◽  
Ichiro Fujita

Area V4 is an intermediate stage of the ventral visual pathway providing major input to the final stages in the inferior temporal cortex (IT). This pathway is involved in the processing of shape, color, and texture. IT neurons are also sensitive to horizontal binocular disparity, suggesting that binocular disparity is processed along the ventral visual pathway. In the present study, we examined the processing of binocular disparity information by V4 neurons. We recorded responses of V4 neurons to binocularly disparate stimuli. A population of V4 neurons modified their responses according to changes of stimulus disparity; neither monocular responses nor eye movements could account for this modulation. Disparity-tuning curves were similar for different locations within a neuron's receptive field. Neighboring neurons recorded using a single electrode displayed similar disparity-tuning properties. These findings indicate that a population of V4 neurons is selective for binocular disparity, invariant for the position of the stimulus within the receptive field. The finding that V4 neurons with similar disparity selectivity are clustered suggests the existence of functional modules for disparity processing in V4.


2006 ◽  
Vol 96 (6) ◽  
pp. 3492-3505 ◽  
Author(s):  
Stephen V. David ◽  
Benjamin Y. Hayden ◽  
Jack L. Gallant

Neurons in cortical area V4 respond selectively to complex visual patterns such as curved contours and non-Cartesian gratings. Most previous experiments in V4 have measured responses to small, idiosyncratic stimulus sets and no single functional model yet accounts for all of the disparate results. We propose that one model, the spectral receptive field (SRF), can explain many observations of selectivity in V4. The SRF describes tuning in terms of the orientation and spatial frequency spectrum and can, in principle, predict the response to any visual stimulus. We estimated SRFs for neurons in V4 of awake primates by linearized reverse correlation of responses to a large set of natural images. We find that V4 neurons have large orientation and spatial frequency bandwidth and often bimodal orientation tuning. For comparison, we estimated SRFs for neurons in primary visual cortex (V1). Consistent with previous observations, we find that V1 neurons have narrower bandwidth than that of V4. To determine whether estimated SRFs can account for previous observations of selectivity, we used them to predict responses to Cartesian gratings, non-Cartesian gratings, natural images, and curved contours. Based on these predictions, we find that the majority of neurons in V1 are selective for Cartesian gratings, whereas the majority of V4 neurons are selective for non-Cartesian gratings or natural images. The SRF describes visual tuning properties with a second-order nonlinear model. These results support the hypothesis that a second-order model is sufficient to describe the general mechanisms mediating shape selectivity in area V4.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rundong Jiang ◽  
Ian Max Andolina ◽  
Ming Li ◽  
Shiming Tang

The ventral visual pathway is crucially involved in integrating low-level visual features into complex representations for objects and scenes. At an intermediate stage of the ventral visual pathway, V4 plays a crucial role in supporting this transformation. Many V4 neurons are selective for shape segments like curves and corners, however it remains unclear whether these neurons are organized into clustered functional domains, a structural motif common across other visual cortices. Using two-photon calcium imaging in awake macaques, we confirmed and localized cortical domains selective for curves or corners in V4. Single-cell resolution imaging confirmed that curve or corner selective neurons were spatially clustered into such domains. When tested with hexagonal-segment stimuli, we find that stimulus smoothness is the cardinal difference between curve and corner selectivity in V4. Combining cortical population responses with single neuron analysis, our results reveal that curves and corners are encoded by neurons clustered into functional domains in V4. This functionally-specific population architecture bridges the gap between the early and late cortices of the ventral pathway and may serve to facilitate complex object recognition.


2019 ◽  
Author(s):  
Rundong Jiang ◽  
Ian M. Andolina ◽  
Ming Li ◽  
Shiming Tang

AbstractThe ventral visual pathway is crucially involved in integrating low-level visual features into complex representations for objects and scenes. At an intermediate stage of the ventral visual pathway, V4 plays a crucial role in supporting this transformation. Many V4 neurons are selective for shape segments like curves and corners, however it remains unclear whether these neurons are organized into clustered functional domains, a structural motif common across other visual cortices. Using two-photon calcium imaging in awake macaques, we confirmed and localized cortical domains selective for curves or corners in V4. Single-cell resolution imaging confirmed that curve or corner selective neurons were spatially clustered into such domains. When tested with hexagonal-segment stimuli, we find that stimulus smoothness is the cardinal difference between curve and corner selectivity in V4. Combining cortical population responses with single neuron analysis, our results reveal that curves and corners are encoded by neurons clustered into functional domains in V4. This functionally-specific population architecture bridges the gap between the early and late cortices of the ventral pathway and may serve to facilitate complex object recognition.


2008 ◽  
Vol 99 (1) ◽  
pp. 402-408 ◽  
Author(s):  
Hironori Kumano ◽  
Seiji Tanabe ◽  
Ichiro Fujita

Neurons in the primary visual cortex (V1) detect binocular disparity by computing the local disparity energy of stereo images. The representation of binocular disparity in V1 contradicts the global correspondence when the image is binocularly anticorrelated. To solve the stereo correspondence problem, this rudimentary representation of stereoscopic depth needs to be further processed in the extrastriate cortex. Integrating signals over multiple spatial frequency channels is one possible mechanism supported by theoretical and psychophysical studies. We examined selectivities of single V4 neurons for both binocular disparity and spatial frequency in two awake, fixating monkeys. Disparity tuning was examined with a binocularly correlated random-dot stereogram (RDS) as well as its anticorrelated counterpart, whereas spatial frequency tuning was examined with a sine wave grating or a narrowband noise. Neurons with broader spatial frequency tuning exhibited more attenuated disparity tuning for the anticorrelated RDS. Additional rectification at the output of the energy model does not likely account for this attenuation because the degree of attenuation does not differ among the various types of disparity-tuned neurons. The results suggest that disparity energy signals are integrated across spatial frequency channels for generating a representation of stereoscopic depth in V4.


Sign in / Sign up

Export Citation Format

Share Document