Group Delay of Acoustic Emissions in the Ear

2006 ◽  
Vol 96 (5) ◽  
pp. 2785-2791 ◽  
Author(s):  
Tianying Ren ◽  
Wenxuan He ◽  
Matthews Scott ◽  
Alfred L. Nuttall

It is commonly accepted that the cochlea emits sound by a backward traveling wave along the cochlear partition. This belief is mainly based on an observation that the group delay of the otoacoustic emission measured in the ear canal is twice as long as the forward delay. In this study, the otoacoustic emission was measured in the gerbil under anesthesia not only in the ear canal but also at the stapes, eliminating measurement errors arising from unknown external- and middle-ear delays. The emission group delay measured at the stapes was compared with the group delay of basilar membrane vibration at the putative emission-generation site, the forward delay. The results show that the total intracochlear delay of the emission is equal to or smaller than the forward delay. For emissions with an f2/f1 ratio <1.2, the data indicate that the reverse propagation of the emission from its generation site to the stapes is much faster than a forward traveling wave to the f2 location. In addition, that the round-trip delays are smaller than the forward delay implies a basal shift of the emission generation site, likely explained by the basal shift of primary-tone response peaks with increasing intensity. However, for emissions with an f1 ≪ f2, the data cannot distinguish backward traveling waves from compression waves because of a very small f1 delay at the f2 site.

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Fangyi Chen ◽  
Dingjun Zha ◽  
Xiaojie Yang ◽  
Allyn Hubbard ◽  
Alfred Nuttall

The discovery that an apparent forward-propagating otoacoustic emission (OAE) induced basilar membrane vibration has created a serious debate in the field of cochlear mechanics. The traditional theory predicts that OAE will propagate to the ear canal via a backward traveling wave on the basilar membrane, while the opponent theory proposed that the OAE will reach the ear canal via a compression wave. Although accepted by most people, the basic phenomenon of the backward traveling wave theory has not been experimentally demonstrated. In this study, for the first time, we showed the backward traveling wave by measuring the phase spectra of the basilar membrane vibration at multiple longitudinal locations of the basal turn of the cochlea. A local vibration source with a unique and precise location on the cochlear partition was created to avoid the ambiguity of the vibration source in most previous studies. We also measured the vibration pattern at different places of a mechanical cochlear model. A slow backward traveling wave pattern was demonstrated by the time-domain sequence of the measured data. In addition to the wave propagation study, a transmission line mathematical model was used to interpret why no tonotopicity was observed in the backward traveling wave.


2010 ◽  
Vol 103 (3) ◽  
pp. 1448-1455 ◽  
Author(s):  
Sebastiaan W. F. Meenderink ◽  
Marcel van der Heijden

The inner ear can produce sounds, but how these otoacoustic emissions back-propagate through the cochlea is currently debated. Two opposing views exist: fast pressure waves in the cochlear fluids and slow traveling waves involving the basilar membrane. Resolving this issue requires measuring the travel times of emissions from their cochlear origin to the ear canal. This is problematic because the exact intracochlear location of emission generation is unknown and because the cochlea is vulnerable to invasive measurements. We employed a multi-tone stimulus optimized to measure reverse travel times. By exploiting the dispersive nature of the cochlea and by combining acoustic measurements in the ear canal with recordings of the cochlear-microphonic potential, we were able to determine the group delay between intracochlear emission-generation and their recording in the ear canal. These delays remained significant after compensating for middle-ear delay. The results contradict the hypothesis that the reverse propagation of emissions is exclusively by direct pressure waves.


2018 ◽  
Author(s):  
A. Zosuls ◽  
L. C. Rupprecht ◽  
D. C. Mountain

AbstractThe presence of forward and reverse traveling wave modes on the basilar membrane has important implications to how the cochlea functions as a filter, transducer, and amplifier of sound. The presence and parameters of traveling waves are of particular importance to interpreting otoacoustic emissions (OAE). OAE are vibrations that propagate out of the cochlea and are measureable as sounds emitted from the tympanic membrane. The interpretation of OAE is a powerful research and clinical diagnostic tool, but OAE use has not reached full potential because the mechanisms of their generation and propagation are not fully understood. Of particular interest and deliberation is whether the emissions propagate as a fluid compression wave or a structural traveling wave. In this study a mechanical probe was used to simulate an OAE generation site and optical imaging was used to measure displacement of the inner hair cell stereocilia of the gerbil cochlea. Inner hair cell stereocilia displacement measurements were made in the radial dimension as a function of their longitudinal location along the length of the basilar membrane in response to a transverse stimulation from the probe. The analysis of the spatial frequency response of the inner hair cell stereocilia at frequencies near the characteristic frequency (CF) of the measurement location suggests that a traveling wave propagates in the cochlear partition simultaneously basal and apical (forward and reverse) from the probe location. The traveling wave velocity was estimated to be 5.9m/s - 8m/s in the base (near CF of 29kHz - 40kHz) and 1.9m/s - 2.4m/s in the second turn (near CF of 2kHz - 3kHz). These results suggest that the cochlear partition is capable of supporting both forward and reverse traveling wave modes generated by a source driving the basilar membrane. This suggests that traveling waves in the cochlear partition contribute to OAE propagation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haim Sohmer

The three modes of auditory stimulation (air, bone and soft tissue conduction) at threshold intensities are thought to share a common excitation mechanism: the stimuli induce passive displacements of the basilar membrane propagating from the base to the apex (slow mechanical traveling wave), which activate the outer hair cells, producing active displacements, which sum with the passive displacements. However, theoretical analyses and modeling of cochlear mechanics provide indications that the slow mechanical basilar membrane traveling wave may not be able to excite the cochlea at threshold intensities with the frequency discrimination observed. These analyses are complemented by several independent lines of research results supporting the notion that cochlear excitation at threshold may not involve a passive traveling wave, and the fast cochlear fluid pressures may directly activate the outer hair cells: opening of the sealed inner ear in patients undergoing cochlear implantation is not accompanied by threshold elevations to low frequency stimulation which would be expected to result from opening the cochlea, reducing cochlear impedance, altering hydrodynamics. The magnitude of the passive displacements at threshold is negligible. Isolated outer hair cells in fluid display tuned mechanical motility to fluid pressures which likely act on stretch sensitive ion channels in the walls of the cells. Vibrations delivered to soft tissue body sites elicit hearing. Thus, based on theoretical and experimental evidence, the common mechanism eliciting hearing during threshold stimulation by air, bone and soft tissue conduction may involve the fast-cochlear fluid pressures which directly activate the outer hair cells.


Author(s):  
Marcus Brown ◽  
John Bradshaw ◽  
Rong Z. Gan

Abstract Blast-induced injuries affect the health of veterans, in which the auditory system is often damaged, and blast-induced auditory damage to the cochlea is difficult to quantify. A recent study modeled blast overpressure (BOP) transmission throughout the ear utilizing a straight, two-chambered cochlea, but the spiral cochlea's response to blast exposure has yet to be investigated. In this study, we utilized a human ear finite element (FE) model with a spiraled, two-chambered cochlea to simulate the response of the anatomical structural cochlea to BOP exposure. The FE model included an ear canal, middle ear, and two and half turns of two-chambered cochlea and simulated a BOP from the ear canal entrance to the spiral cochlea in a transient analysis utilizing fluid-structure interfaces. The model's middle ear was validated with experimental pressure measurements from the outer and middle ear of human temporal bones. The results showed high stapes footplate displacements up to 28.5µm resulting in high intracochlear pressures and basilar membrane (BM) displacements up to 43.2µm from a BOP input of 30.7kPa. The cochlea's spiral shape caused asymmetric pressure distributions as high as 4kPa across the cochlea's width and higher BM transverse motion than that observed in a similar straight cochlea model. The developed spiral cochlea model provides an advancement from the straight cochlea model to increase the understanding of cochlear mechanics during blast and progresses towards a model able to predict potential hearing loss after blast.


2005 ◽  
Vol 2 (4) ◽  
pp. 341-348 ◽  
Author(s):  
Hongxue Cai ◽  
Daphne Manoussaki ◽  
Richard Chadwick

The cochlea transduces sound-induced vibrations in the inner ear into electrical signals in the auditory nerve via complex fluid–structure interactions. The mammalian cochlea is a spiral-shaped organ, which is often uncoiled for cochlear modelling. In those few studies where coiling has been considered, the cochlear partition was often reduced to the basilar membrane only. Here, we extend our recently developed hybrid analytical/numerical micromechanics model to include curvature effects, which were previously ignored. We also use a realistic cross-section geometry, including the tectorial membrane and cellular structures of the organ of Corti, to model the apical and basal regions of a guinea-pig cochlea. We formulate the governing equations of the fluid and solid domains in a curvilinear coordinate system. The WKB perturbation method is used to treat the propagation of travelling waves along the coiled cochlear duct, and the O (1) system of the governing equations is solved in the transverse plane using finite-element analysis. We find that the curvature of the cochlear geometry has an important functional significance; at the apex, it greatly increases the shear gain of the cochlear partition, which is a measure of the bending efficiency of the outer hair cell stereocilia.


2017 ◽  
Vol 104 (2) ◽  
pp. 171-182
Author(s):  
E Bulut ◽  
L Öztürk

We hypothesized that cochlear frequency discrimination occurs through medial olivocochlear efferent (MOCE)-induced alterations in outer hair cell (OHC) electromotility, which is independent from basilar membrane traveling waves. After obtaining informed consent, volunteers with normal hearing (n = 10; mean age: 20.6 ± 1.2 years) and patients with unilateral deafness (n = 10; mean age: 30.2 ± 17.9 years) or bilateral deafness (n = 8; mean age: 30.7 ± 13.8 years) underwent a complete physical and audiological examination, and audiological tests including transient evoked otoacoustic emission and spontaneous otoacoustic emission (TEOAE and SOAE, respectively). SOAE recordings were performed during contralateral pure-tone stimuli at 1 and 3 kHz. SOAE recordings in the presence of contralateral pure-tone stimuli showed frequency-specific activation out of the initial frequency range of SOAE responses. Basilar membrane motion during pure-tone stimulation results from OHC activation by means of MOCE neurons rather than from a traveling wave. Eventually, frequency-specific responses obtained from SOAEs suggested that OHC electromotility may be responsible for frequency discrimination of the cochlea independently from basilar membrane motion.


1981 ◽  
Vol 5 (2-3) ◽  
pp. 295-305 ◽  
Author(s):  
Richard A. Schmiedt ◽  
Joe C. Adams
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document