Sensory Activation and Receptive Field Organization of the Lateral Giant Escape Neurons in Crayfish

2010 ◽  
Vol 104 (2) ◽  
pp. 675-684 ◽  
Author(s):  
Yen-Chyi Liu ◽  
Jens Herberholz

Crayfish ( Procambarus clarkii ) have bilateral pairs of giant interneurons that control rapid escape movements in response to predatory threats. The medial giant neurons (MGs) can be made to fire an action potential by visual or tactile stimuli directed to the front of the animal and this leads to an escape tail-flip that thrusts the animal directly backward. The lateral giant neurons (LGs) can be made to fire an action potential by strong tactile stimuli directed to the rear of the animal, and this produces flexions of the abdomen that propel the crayfish upward and forward. These observations have led to the notion that the receptive fields of the giant neurons are locally restricted and do not overlap with each other. Using extra- and intracellular electrophysiology in whole animal preparations of juvenile crayfish, we found that the receptive fields of the LGs are far more extensive than previously assumed. The LGs receive excitatory inputs from descending interneurons originating in the brain; these interneurons can be activated by stimulation of the antenna II nerve or the protocerebral tract. In our experiments, descending inputs alone could not cause action potentials in the LGs, but when paired with excitatory postsynaptic potentials elicited by stimulation of tail afferents, the inputs summed to yield firing. Thus the LG escape neurons integrate sensory information received through both rostral and caudal receptive fields, and excitatory inputs that are activated rostrally can bring the LGs' membrane potential closer to threshold. This enhances the animal's sensitivity to an approaching predator, a finding that may generalize to other species with similarly organized escape systems.

1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


Author(s):  
Paolo Solari ◽  
Giorgia Sollai ◽  
Francesco Palmas ◽  
Andrea Sabatini ◽  
Roberto Crnjar

The integration of sensory information with adequate motor outputs is critical for animal survival. Here, we present an innovative technique based on a non-invasive closed-circuit device consisting of a perfusion/stimulation chamber chronically applied on a single leg of the crayfish Procambarus clarkii. Using this technique, we focally stimulated the leg inside the chamber and studied the leg-dependent sensory-motor integration involving other sensory appendages, such as antennules and maxillipeds, which remain unstimulated outside the chamber. Results show that the stimulation of a single leg with chemicals, such as disaccharides, is sufficient to trigger a complex search behaviour involving locomotion coupled with the reflex activation of antennules and maxillipeds. This technique can be easily adapted to other decapods and/or other sensory appendages. Thus, it has opened possibilities for studying sensory-motor integration evoked by leg stimulation in whole aquatic animals under natural conditions to supplement, with a direct approach, current ablation/silencing techniques.


1990 ◽  
Vol 64 (4) ◽  
pp. 1134-1148 ◽  
Author(s):  
S. N. Currie ◽  
P. S. Stein

1. We demonstrated multisecond increases in the excitability of the rostral-scratch reflex in the turtle by electrically stimulating the shell at sites within the rostral-scratch receptive field. To examine the cellular mechanisms for these multisecond increases in scratch excitability, we recorded from single cutaneous afferents and sensory interneurons that responded to stimulation of the shell within the rostral-scratch receptive field. A single segment of the midbody spinal cord (D4, the 4th postcervical segment) was isolated in situ by transecting the spinal cord at the segment's anterior and posterior borders. The isolated segment was left attached to its peripheral nerve that innervates part of the rostral-scratch receptive field. A microsuction electrode (4-5 microns ID) was used to record extracellularly from the descending axons of cutaneous afferents and interneurons in the spinal white matter at the posterior end of the D4 segment. 2. The turtle shell is innervated by slowly and rapidly adapting cutaneous afferents. All cutaneous afferents responded to a single electrical stimulus to the shell with a single action potential. Maintained mechanical stimulation applied to the receptive field of some slowly adapting afferents produced several seconds of afterdischarge at stimulus offset. We refer to the cutaneous afferent afterdischarge caused by mechanical stimulation of the shell as "peripheral afterdischarge." 3. Within the D4 spinal segment there were some interneurons that responded to a brief mechanical stimulus within their receptive fields on the shell with short afterdischarge and others that responded with long afterdischarge. Short-afterdischarge interneurons responded to a single electrical pulse to a site in their receptive fields either with a brief train of action potentials or with a single action potential. Long-afterdischarge interneurons responded to a single electrical shell stimulus with up to 30 s of afterdischarge. Long-afterdischarge interneurons also exhibited strong temporal summation in response to a pair of electrical shell stimuli delivered up to several seconds apart. Because all cutaneous afferents responded to an electrical shell stimulus with a single action potential, we conclude that electrically evoked afterdischarge in interneurons was produced by neural mechanisms in the spinal cord; we refer to this type of afterdischarge as "central afterdischarge." 4. These results demonstrate that neural mechanisms for long-lasting excitability changes in response to cutaneous stimulation reside in a single segment of the spinal cord. Cutaneous interneurons with long afterdischarge may serve as cellular loci for multise


1979 ◽  
Vol 42 (4) ◽  
pp. 954-974 ◽  
Author(s):  
S. C. Rosen ◽  
K. R. Weiss ◽  
I. Kupfermann

1. The cells of two clusters of small neurons on the ventrocaudal surface of each hemicerebral ganglion of Aplysia were found to exhibit action potentials following tactile stimuli applied to the skin of the head. These neurons appear to be mechanosensory afferents since they possess axons in the nerves innervating the skin and tactile stimulation evokes spikes with no prepotentials, even when the cell bodies are sufficiently hyperpolarized to block some spikes. The mechanosensory afferents may be primary afferents since the sensory response persists after chemical synaptic transmission is blocked by bathing the ganglion and peripheral structures in seawater with a high-Mg2+ and low-Ca2+ content. 2. The mechanosensory afferents are normally silent and are insensitive to photic, thermal, and chemical stimuli. A punctate tactile stimulus applied to a circumscribed region of skin can evoke a burst of spikes. If the stimulus is maintained at a constant forces, the mechanosensory response slowly adapts over a period of seconds. Repeated brief stimuli have little or no effect on spike frequency within a burst. 3. Approximately 81% of the mechanoafferent neurons have a single ipsilateral receptive field. The fields are located on the lips, the anterior tentacles, the dorsal portion of the head, the neck, or the perioral zone. Because many cells have collateral axons in the cerebral connectives, receptive fields elsewhere on the body are a possibility. The highest receptive-field density was associated with the lips. Within each area, receptive fields vary in size and shape. Adjacent fields overlap and larger fields frequently encompass several smaller ones. The features of some fields appear invariant from one animal to the next. A loose form of topographic organization of the mechanoafferent cells was observed. For example, cells located in the medial cluster have lip receptive fields, and most cells in the posterolateral portion of the lateral clusters have tentacle receptive fields. 4. Intracellular stimulation of individual mechanoafferents evokes short and constant-latency EPSPs in putative motor neurons comprising the identified B-cell clusters of the cerebral ganglion. On the basis of several criteria, these EPSPs appear to be several criteria, these EPSPs appear to be chemically mediated and are monosynaptic. 5. Repetitive intracellular stimulation of individual mechanoafferent neurons at low rates results in a gradual decrement in the amplitude of the EPSPs evoked in B cluster neurons. EPSP amplitude can be restored following brief periods of rest, but subsequent stimulation leads to further diminution of the response. 6. A decremented response cannot be restored by strong mechanical stimulation outside the receptive field of the mechanoafferent or by electrical stimulation of the cerebral nerves or connectives...


2021 ◽  
Author(s):  
Giordano Ramos-Traslosheros ◽  
Marion Silies

In Drosophila, direction-selective neurons implement a mechanism of motion computation similar to cortical neurons, using contrast-opponent receptive fields with ON and OFF subunits. It is not clear how the presynaptic circuitry of direction-selective neurons in the OFF pathway supports this computation, because all major inputs are OFF-rectified neurons. Here, we reveal the biological substrate for motion computation in the OFF pathway. Three interneurons, Tm2, Tm9 and CT1, also provide information about ON stimuli to the OFF direction-selective neuron T5 across its receptive field, supporting a contrast-opponent receptive field organization. Consistent with its prominent role in motion detection, variability in Tm9 receptive field properties is passed on to T5, and calcium decrements in Tm9 in response to ON stimuli are maintained across behavioral states, while spatial tuning is sharpened by active behavior. Together, our work shows how a key neuronal computation is implemented by its constituent neuronal circuit elements to ensure direction selectivity.


1997 ◽  
Vol 78 (5) ◽  
pp. 2296-2308 ◽  
Author(s):  
Stephen E. Sherman ◽  
Lei Luo ◽  
Jonathan O. Dostrovsky

Sherman, Stephen E., Lei Luo, and Jonathan O. Dostrovsky. Altered receptive fields and sensory modalities of rat VPL thalamic neurons during spinal strychnine-induced allodynia. J. Neurophysiol. 78: 2296–2308, 1997. Allodynia is an unpleasant sequela of neural injury or neuropathy that is characterized by the inappropriate perception of light tactile stimuli as pain. This condition may be modeled experimentally in animals by the intrathecal (i.t.) administration of strychnine, a glycine receptor antagonist. Thus after i.t. strychnine, otherwise innocuous tactile stimuli evoke behavioral and autonomic responses that normally are elicited only by noxious stimuli. The current study was undertaken to determine how i.t. strychnine alters the spinal processing of somatosensory input by examining the responses of neurons in the ventroposterolateral thalamic nucleus. Extracellular, single-unit recordings were conducted in the lateral thalamus of 19 urethan-anaesthetized, male, Wistar rats (342 ± 44 g; mean ± SD). Receptive fields and responses to noxious and innocuous cutaneous stimuli were determined for 19 units (1 per animal) before and immediately after i.t. strychnine (40 μg). Eighteen of the animals developed allodynia as evidenced by the ability of otherwise innocuous brush or air jet stimuli to evoke cardiovascular and/or motor reflexes. All (3) of the nociceptive-specific units became responsive to brush stimulation after i.t. strychnine, and one became sensitive to brushing over an expanded receptive field. Expansion of the receptive field, as determined by brush stimulation, also was exhibited by all of the low-threshold mechanoreceptive units (14) and wide dynamic range units (2) after i.t. strychnine. The use of air jet stimuli at fixed cutaneous sites also provided evidence of receptive field expansion, because significant unit responses to air jet developed at 13 cutaneous sites (on 7 animals) where an identical stimulus was ineffective in evoking a unit response before i.t. strychnine. However, the magnitude of the unit response to cutaneous air jet stimulation was not changed at sites that already had been sensitive to this stimulus before i.t. strychnine. The onset of allodynia corresponded with the onset of the altered unit responses (i.e., lowered threshold/receptive field expansion) for the majority of animals (9), but the altered unit response either terminated concurrently with symptoms of allodynia (6) or, more frequently, outlasted the symptoms of allodynia (10) as the effects of strychnine declined. The present results demonstrate that the direct, receptor-mediated actions of strychnine on the spinal processing of sensory information are reflected by changes in the receptive fields and response properties of nociceptive and nonnociceptive thalamic neurons. These changes are consistent with the involvement of thalamocortical mechanisms in the expression of strychnine-induced allodynia and, moreover, suggest that i.t. strychnine also produces changes in innocuous tactile sensation.


1992 ◽  
Vol 171 (1) ◽  
pp. 127-137 ◽  
Author(s):  
DAVID BODZNICK ◽  
JOHN C. MONTGOMERY

Elasmobranch fishes have an electroreceptive system which they use for prey detection and orientation. Sensory inputs in this system are corrupted by a form of reafference generated by the animal's own ventilation. However, we show here that in the carpet shark, Cephaloscylium isabella, as in two previously studied batoid species, this ventilatory ‘noise’ is reduced by sensory processing within the medullary nucleus of the electrosensory system. It has been proposed that the noise cancellation is achieved by a common mode rejection mechanism. One prediction of this hypothesis is that secondary neurons within the medullary nucleus should have both excitatory and inhibitory components to their receptive fields. This prediction is experimentally verified here. Projection neurons of the medullary nucleus in the carpet shark typically have a focal excitatory, and a diffuse inhibitory, receptive field organization including a component of contralateral inhibition. This result provides strong support for the hypothesis that ventilatory suppression in the elasmobranch electrosensory system is achieved by a common mode mechanism. Note: Department of Biology, Wesleyan University, Middletown, CT 06457, USA. Present address: Department of Zoology, University of Auckland, Auckland, New Zealand.


1997 ◽  
Vol 78 (3) ◽  
pp. 1691-1706 ◽  
Author(s):  
Miguel A. L. Nicolelis ◽  
Rick C. S. Lin ◽  
John K. Chapin

Nicolelis, Miguel A. L., Rick C. S. Lin, and John K. Chapin. Neonatal whisker removal reduces the discrimination of tactile stimuli by thalamic ensembles in adult rats. J. Neurophysiol. 78: 1691–1706, 1997. Simultaneous recordings of up to 48 single neurons per animal were used to characterize the long-term functional effects of sensory plastic modifications in the ventral posterior medial nucleus (VPM) of the thalamus following unilateral removal of facial whiskers in newborn rats. One year after this neonatal whisker deprivation, neurons in the contralateral VPM responded to cutaneous stimulation of the face at much longer minimal latencies (15.2 ± 8.2 ms, mean ± SD) than did normal cells (8.8 ± 5.3 ms) in the same subregion of the VPM. In 69% of these neurons, the initial sensory responses to stimulus offset were followed for up to 700 ms by reverberant trains of bursting discharge, alternating in 100-ms cycles with inhibition. Receptive fields in the deafferented VPM were also atypical in that they extended over the entire face, shoulder, forepaw, hindpaw, and even ipsilateral whiskers. Discriminant analysis (DA) was then used to statistically evaluate how this abnormal receptive field organization might affect the ability of thalamocortical neuronal populations to “discriminate” somatosensory stimulus location. To standardize this analysis, three stimulus targets (“groups”) were chosen in all animals such that they triangulated the central region of the “receptive field” of the recorded multineuronal ensemble. In the normal animals these stimulus targets were whiskers or perioral hairs; in the deprived animals the targets typically included hairy skin of the body as well as face. The measured variables consisted of each neuron's spiking response to each stimulus differentiated into three poststimulus response epochs (0–15, 15–30, and 30–45 ms). DA quantified the statistical contribution of each of these variables to its overall discrimination between the three stimulus sites. In the normal animals, the stimulus locations were correctly classified in 88.2 ± 3.7% of trials on the basis of the spatiotemporal patterns of ensemble activity derived from up to 18 single neurons. In the deprived animals, the stimulus locations were much less consistently discriminated (reduced to 73.5 ± 12.6%; difference from controls significant at P < 0.01) despite the fact that much more widely spaced stimulus targets were used and even when up to 20 neurons were included in the ensemble. Overall, these results suggest that neonatal damage to peripheral sense organs may produce marked changes in the physiology of individual neurons in the somatosensory thalamus. Moreover, the present demonstration that these changes can profoundly alter sensory discrimination at the level of neural populations in the thalamus provides important evidence that the well-known perceptual effects of chronic peripheral deprivation may be partially attributable to plastic reorganization at subcortical levels.


1977 ◽  
Vol 40 (1) ◽  
pp. 53-62 ◽  
Author(s):  
D. A. Burkhardt

1. Cones in the retinas of two closely related species of perch, the walleye and sauger (S, vitreum vitreum and S. canadense), are remarkably large. This paper reports a first series of intracellular recordings obtained from 77 of these cones. 2. A small spot of light evokes a sustained hyperpolarizing response from perch cones which may exceed 10 mV in amplitude, is graded with stimulus intensity, and is markedly reduced when the spot is decentered. Most cones seem to be orange sensitive with peak sensitivity at about 600 nm. 3. Enlarging the stimulus diameter from 0.04 to 0.25 mm produces a modest increase in the hyperpolarizing response. However, larger stimuli which illuminate surrounding regions of the retina often evoke a delayed depolarizing potential which antagonizes the sustained phase of the cone's hyperpolarizing response to central illumination. 4. The outer diameter of the region of the antagonistic surround is at least 2.2 mm in extent. An annulus evokes a depolarizing response only if the central region of the receptive field is simultaneously activated. 5. The present results provide the first direct evidence that the receptive fields of cones in fish retinas have an antagonistic center-surround organization. Luminosity-type horizontal cells probably serve as the interneurons which mediate the depolarizing influence of the surround.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giordano Ramos-Traslosheros ◽  
Marion Silies

AbstractIn Drosophila, direction-selective neurons implement a mechanism of motion computation similar to cortical neurons, using contrast-opponent receptive fields with ON and OFF subfields. It is not clear how the presynaptic circuitry of direction-selective neurons in the OFF pathway supports this computation if all major inputs are OFF-rectified neurons. Here, we reveal the biological substrate for motion computation in the OFF pathway. Three interneurons, Tm2, Tm9 and CT1, provide information about ON stimuli to the OFF direction-selective neuron T5 across its receptive field, supporting a contrast-opponent receptive field organization. Consistent with its prominent role in motion detection, variability in Tm9 receptive field properties transfers to T5, and calcium decrements in Tm9 in response to ON stimuli persist across behavioral states, while spatial tuning is sharpened by active behavior. Together, our work shows how a key neuronal computation is implemented by its constituent neuronal circuit elements to ensure direction selectivity.


Sign in / Sign up

Export Citation Format

Share Document