scholarly journals Models for the Extrapolation of Target Motion for Manual Interception

2009 ◽  
Vol 102 (3) ◽  
pp. 1491-1502 ◽  
Author(s):  
John F. Soechting ◽  
John Z. Juveli ◽  
Hrishikesh M. Rao

Intercepting a moving target requires a prediction of the target's future motion. This extrapolation could be achieved using sensed parameters of the target motion, e.g., its position and velocity. However, the accuracy of the prediction would be improved if subjects were also able to incorporate the statistical properties of the target's motion, accumulated as they watched the target move. The present experiments were designed to test for this possibility. Subjects intercepted a target moving on the screen of a computer monitor by sliding their extended finger along the monitor's surface. Along any of the six possible target paths, target speed could be governed by one of three possible rules: constant speed, a power law relation between speed and curvature, or the trajectory resulting from a sum of sinusoids. A go signal was given to initiate interception and was always presented when the target had the same speed, irrespective of the law of motion. The dependence of the initial direction of finger motion on the target's law of motion was examined. This direction did not depend on the speed profile of the target, contrary to the hypothesis. However, finger direction could be well predicted by assuming that target location was extrapolated using target velocity and that the amount of extrapolation depended on the distance from the finger to the target. Subsequent analysis showed that the same model of target motion was also used for on-line, visually mediated corrections of finger movement when the motion was initially misdirected.

2020 ◽  
Author(s):  
Samuele Contemori ◽  
Gerald E. Loeb ◽  
Brian D. Corneil ◽  
Guy Wallis ◽  
Timothy J. Carroll

ABSTRACTVolitional visuomotor responses in humans are generally thought to manifest 100ms or more after stimulus onset. Under appropriate conditions, however, much faster target-directed responses can be produced at upper limb and neck muscles. These “express” responses have been termed stimulus-locked responses (SLRs) and are proposed to be modulated by visuomotor transformations performed subcortically via the superior colliculus. Unfortunately, for those interested in studying SLRs, these responses have proven difficult to detect consistently across individuals. The recent report of an effective paradigm for generating SLRs in 100% of participants appears to change this. The task required the interception of a moving target that emerged from behind a barrier at a time consistent with the target velocity. Here we aimed to reproduce the efficacy of this paradigm for eliciting SLRs and to test the hypothesis that its effectiveness derives from the predictability of target onset time as opposed to target motion per se. In one experiment, we recorded surface EMG from shoulder muscles as participants made reaches to intercept temporally predictable or unpredictable targets. Consistent with our hypothesis, predictably timed targets produced more frequent and stronger SLRs than unpredictably timed targets. In a second experiment, we compared different temporally predictable stimuli and observed that transiently presented targets produced larger and earlier SLRs than sustained moving targets. Our results suggest that target motion is not critical for facilitating the expression of an SLR and that timing predictability does not rely on extrapolation of a physically plausible motion trajectory. These findings provide support for a mechanism whereby an internal timer, probably located in cerebral cortex, primes the processing of both visual input and motor output within the superior colliculus to produce SLRs.


2020 ◽  
Author(s):  
Yusuke Ujihara ◽  
Hiroshi Matsui ◽  
Ei-Ichi Izawa

AbstractInterception of a moving target is a fundamental behaviour of predators and requires tight coupling between the sensory and motor systems. In the literature of foraging studies, feedback mechanisms based on current target position are frequently reported. However, there have also been recent reports of animals employing feedforward mechanisms, in which prediction of future target location plays an important role. In nature, coordination of these two mechanisms may contribute to intercepting evasive prey. However, how animals weigh these two mechanisms remain poorly understood. Here, we conducted a behavioural experiment involving crows (which show flexible sensorimotor coordination in various domains) capturing a moving target. We changed the velocity of the target to examine how the crows utilised prediction of the target location. The analysis of moment-to-moment head movements and computational simulations revealed that the crows used prediction of future target location when the target velocity was high. In contrast, their interception depended on the current momentary position of the target when the target velocity was slow. These results suggest that crows successfully intercept targets by weighing predictive and visual feedback mechanisms, depending on the target velocity.


2000 ◽  
Vol 84 (4) ◽  
pp. 1748-1762 ◽  
Author(s):  
Masaki Tanaka ◽  
Stephen G. Lisberger

The appearance of a stationary but irrelevant cue triggers a smooth eye movement away from the position of the cue in monkeys that have been trained extensively to smoothly track the motion of moving targets while not making saccades to the stationary cue. We have analyzed the parameters that regulate the size of the cue-evoked smooth eye movement and examined whether presentation of the cue changes the initiation of pursuit for subsequent steps of target velocity. Cues evoked smooth eye movements in blocks of target motions that required smooth pursuit to moving targets, but evoked much smaller smooth eye movements in blocks that required saccades to stationary targets. The direction of the cue-evoked eye movement was always opposite to the position of the cue and did not depend on whether subsequent target motion was toward or away from the position of fixation. The latency of the cue-evoked smooth eye movement was near 100 ms and was slightly longer than the latency of pursuit for target motion away from the position of fixation. The size of the cue-evoked smooth eye movement was as large as 10°/s and decreased as functions of the eccentricity of the cue and the illumination of the experimental room. To study the initiation of pursuit in the wake of the cues, we used bilateral cues at equal eccentricities to the right and left of the position of fixation. These evoked smaller eye velocities that were consistent with vector averaging of the responses to each cue. In the wake of bilateral cues, the initiation of pursuit was enhanced for target motion away from the position of fixation, but not for target motion toward the position of fixation. We suggest that the cue-evoked smooth eye movement is related to a previously postulated on-line gain control for pursuit, and that it is a side-effect of sudden activation of the gain-controlling element.


2018 ◽  
Vol 120 (2) ◽  
pp. 421-438 ◽  
Author(s):  
Clara Bourrelly ◽  
Julie Quinet ◽  
Laurent Goffart

The caudal fastigial nuclei (cFN) are the output nuclei by which the medio-posterior cerebellum influences the production of visual saccades. We investigated in two head-restrained monkeys their contribution to the generation of interceptive saccades toward a target moving centrifugally by analyzing the consequences of a unilateral inactivation (10 injection sessions). We describe here the effects on saccades made toward a centrifugal target that moved along the horizontal meridian with a constant (10, 20, or 40°/s), increasing (from 0 to 40°/s over 600 ms), or decreasing (from 40 to 0°/s over 600 ms) speed. After muscimol injection, the monkeys were unable to foveate the current location of the moving target. The horizontal amplitude of interceptive saccades was reduced during contralesional target motions and hypermetric during ipsilesional ones. For both contralesional and ipsilesional saccades, the magnitude of dysmetria increased with target speed. However, the use of accelerating and decelerating targets revealed that the dependence of dysmetria upon target velocity was not due to the current velocity but to the required amplitude of saccade. We discuss these results in the framework of two hypotheses, the so-called “dual drive” and “bilateral” hypotheses. NEW & NOTEWORTHY Unilateral inactivation of the caudal fastigial nucleus impairs the accuracy of saccades toward a moving target. Like saccades toward a static target, interceptive saccades are hypometric when directed toward the contralesional side and hypermetric when they are ipsilesional. The dysmetria depends on target velocity, but the use of accelerating or decelerating targets reveals that velocity is not the crucial parameter. We extend the bilateral fastigial control of saccades and fixation to the production of interceptive saccades.


2002 ◽  
Vol 87 (6) ◽  
pp. 2936-2945 ◽  
Author(s):  
Anne K. Churchland ◽  
Stephen G. Lisberger

In previous experiments, on-line modulation of the gain of visual-motor transmission for pursuit eye movements was demonstrated in monkeys by showing that the response to a brief perturbation of target motion was strongly enhanced during pursuit relative to during fixation. The present paper elaborates the properties of on-line gain control by recording the smooth-pursuit eye movements of human subjects during tracking of a spot target. When perturbations consisted of one cycle of a 5-Hz sine wave, responses were significantly larger during pursuit than during fixation. Furthermore, responses grew as a function of eye/target velocity at the time of the perturbation and of perturbation amplitude. Thus human pursuit, like monkey pursuit, is modulated by on-line gain control. For larger perturbations consisting of a single sine wave at 2.8 Hz, ±19°/s, the degree of enhancement depended strongly on the phase of the perturbation. Enhancement was present when “peak-first” perturbations caused the target speed to increase first and was attenuated when “peak-last” perturbations caused target speed to decrease first. This effect was most profound when the perturbation was 2.8 Hz, ±19°/s but was also present when the amplitude of the peak-last perturbation was ±5o/s. For peak-last perturbations, the eye velocity evoked by the later peak of the perturbation was inversely related to that evoked by the preceding trough of the perturbation. We interpret these effects of perturbation phase as evidence that peak-last perturbations cause a decrease in the on-line gain of visual-motor transmission for pursuit. We conclude that gain control is modulated dynamically as behavioral conditions change. Finally, when perturbations were presented as a sequence of three large, peak-last sine waves starting at the onset of target motion at 10°/s, repeating the conditions used in prior studies on humans, we were able to replicate the prior finding that the response to the perturbations was equal during pursuit and fixation. We conclude that on-line gain control modulates human pursuit and that it can be probed most reliably with small, brief perturbations that do not affect the on-line gain themselves.


2017 ◽  
Author(s):  
Laurent Goffart ◽  
Aaron Cecala ◽  
Neeraj Gandhi

ABSTRACTFollowing the suggestion that a command encoding the expected here-and-now target location feeds the oculomotor system during interceptive saccades, we tested whether this command originates in the deep superior colliculus (SC). Monkeys generated saccades to targets that were static or moving along the preferred axis, away from (outward) or toward a fixated target (inward) with a constant speed (20°/s). Vertical and horizontal motions were also tested. Extracellular activity of 57 saccade-related neurons was recorded in 3 monkeys. The movement field (MF) parameters (boundaries, center and firing rate) were estimated after spline fitting the relation between the saccade amplitude and the average firing rate of the motor burst. During radial motion, the inner MF boundary shifted in the same direction as the target motion for some neurons, not all. During vertical motion, both lower and upper boundaries were shifted upward during upward motion whereas the upper boundary only shifted during downward motions. For horizontal motions, the medial boundaries were not changed. The MF center was shifted only for outward motion. Regardless of the motion direction, the average firing rate was consistently reduced during interceptive saccades. Our study shows an involvement of the saccade-related burst of SC neurons in steering the gaze toward a moving target. When observed, the shifts of MF boundary in the direction of target motion correspond to commands related to antecedent target locations. The absence of shift in the opposite direction shows that SC activity does not issue predictive commands related to the future target location.SIGNIFICANCE STATEMENTBy comparing the movement field (MF) of saccade-related neurons between saccades toward static and moving targets, we show that the motor burst issued by neurons in the superior colliculus does not convey commands related to the future location of a moving target. During interceptive saccades, the active population consists of a continuum of neurons, ranging from cells exhibiting a shift in the center or boundary of their MF to cells which exhibit no change. The shifts correspond to residual activity related to the fact that the active population does not change as fast as the target in the visual field. By contrast, the absence of shift indicates commands related to the current target location, as if it were static.


Author(s):  
Jessica Schnabel

Mind wandering, or “daydreaming,” is a shift in the contents of a thought away from a task and/or event in the external environment, to self-generated thoughts and feelings. This research seeks to test the reliability of eye tracking as an objective of measure mind wandering using the Wandering Eye Paradigm, as well as examine the relationships between mind wandering and individual characteristics. Fifty participants will be recruited for two appointments a day apart, on each day on each day completing two eye tracking sessions following a moving target. In this task, participants will be instructed to press the space bar if they feel they are mind wandering, and then answer three questions about their episode content. Questionnaires measuring mind wandering, procrastination, mindfulness, creativity and personality (in particular conscientiousness) will be completed between eye tracking sessions. By comparing the eye tracking data in the period prior to the spacebar press we can determine quantifiable indicators of the onset and duration of mind wandering episodes by analyzing gaze location in relation to the target location. It has been hypothesized that severity of task performance failures (losing track of the target) should correlate with the “depth” of the mind wandering episode content. Additionally, we expect the frequency of mind wandering episodes to correlate with individual characteristics, and that these measures will be consistent across trials. This research would provide a novel objective way to identify and measure mind wandering, and would help further advance the understanding of its behavioral and subjective dimensions.


2006 ◽  
Vol 16 (1-2) ◽  
pp. 1-22 ◽  
Author(s):  
Junko Fukushima ◽  
Teppei Akao ◽  
Sergei Kurkin ◽  
Chris R.S. Kaneko ◽  
Kikuro Fukushima

In order to see clearly when a target is moving slowly, primates with high acuity foveae use smooth-pursuit and vergence eye movements. The former rotates both eyes in the same direction to track target motion in frontal planes, while the latter rotates left and right eyes in opposite directions to track target motion in depth. Together, these two systems pursue targets precisely and maintain their images on the foveae of both eyes. During head movements, both systems must interact with the vestibular system to minimize slip of the retinal images. The primate frontal cortex contains two pursuit-related areas; the caudal part of the frontal eye fields (FEF) and supplementary eye fields (SEF). Evoked potential studies have demonstrated vestibular projections to both areas and pursuit neurons in both areas respond to vestibular stimulation. The majority of FEF pursuit neurons code parameters of pursuit such as pursuit and vergence eye velocity, gaze velocity, and retinal image motion for target velocity in frontal and depth planes. Moreover, vestibular inputs contribute to the predictive pursuit responses of FEF neurons. In contrast, the majority of SEF pursuit neurons do not code pursuit metrics and many SEF neurons are reported to be active in more complex tasks. These results suggest that FEF- and SEF-pursuit neurons are involved in different aspects of vestibular-pursuit interactions and that eye velocity coding of SEF pursuit neurons is specialized for the task condition.


2015 ◽  
Vol 114 (3) ◽  
pp. 1577-1592 ◽  
Author(s):  
Barbara La Scaleia ◽  
Myrka Zago ◽  
Francesco Lacquaniti

Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience.


Sign in / Sign up

Export Citation Format

Share Document