Radial Biases in the Processing of Motion and Motion-Defined Contours by Human Visual Cortex

2009 ◽  
Vol 102 (5) ◽  
pp. 2974-2981 ◽  
Author(s):  
Colin W. G. Clifford ◽  
Damien J. Mannion ◽  
J. Scott McDonald

Luminance gratings reportedly produce a stronger functional magnetic resonance imaging (fMRI) blood oxygen level–dependent (BOLD) signal in those parts of the retinotopic cortical maps where they are oriented radially to the point of fixation. We sought to extend this finding by examining anisotropies in the response of cortical areas V1–V3 to motion-defined contour stimuli. fMRI at 3 Tesla was used to measure the BOLD signal in the visual cortex of six human subjects. Stimuli were composed of strips of spatial white noise texture presented in an annular window. The texture in alternate strips moved in opposite directions (left–right or up–down). The strips themselves were static and tilted 45° left or right from vertical. Comparison with maps of the visual field obtained from phase-encoded retinotopic analysis revealed systematic patterns of radial bias. For motion, a stronger response to horizontal was evident within V1 and along the borders between V2 and V3. For orientation, the response to leftward tilted contours was greater in left dorsal and right ventral V1–V3. Radial bias for the orientation of motion-defined contours analogous to that reported previously for luminance gratings could reflect cue-invariant processing or the operation of distinct mechanisms subject to similar anisotropies in orientation tuning. Radial bias for motion might be related to the phenomenon of “motion streaks,” whereby temporal integration by the visual system introduces oriented blur along the axis of motion. We speculate that the observed forms of radial bias reflect a common underlying anisotropy in the representation of spatiotemporal image structure across the visual field.

2020 ◽  
Vol 35 (1) ◽  
pp. 100-102
Author(s):  
Andrei Manoliu ◽  
Ronald Sladky ◽  
Sigrid Scherpiet ◽  
Lutz Jäncke ◽  
Matthias Kirschner ◽  
...  

The aim of this study was to investigate the effect of acute dopamine agonistic and antagonistic manipulation on the visual-cue induced blood oxygen level-dependent signal response in healthy volunteers. Seventeen healthy volunteers in a double-blind placebo-controlled cross-over design received either a dopamine antagonist, agonist or placebo and underwent functional magnetic resonance imaging. Using classical inference and Bayesian statistics, we found no effect of dopaminergic modulation on properties of visual-cue induced blood oxygen level-dependent signals in the visual cortex, particularly on distinct properties of the haemodynamic response function (amplitude, time-to-peak and width). Dopamine-related effects modulating the neurovascular coupling in the visual cortex might be negligible when measured via functional magnetic resonance imaging.


2002 ◽  
Vol 357 (1424) ◽  
pp. 1003-1037 ◽  
Author(s):  
Nikos K. Logothetis

Magnetic resonance imaging (MRI) has rapidly become an important tool in clinical medicine and biological research. Its functional variant (functional magnetic resonance imaging; fMRI) is currently the most widely used method for brain mapping and studying the neural basis of human cognition. While the method is widespread, there is insufficient knowledge of the physiological basis of the fMRI signal to interpret the data confidently with respect to neural activity. This paper reviews the basic principles of MRI and fMRI, and subsequently discusses in some detail the relationship between the blood–oxygen–level–dependent (BOLD) fMRI signal and the neural activity elicited during sensory stimulation. To examine this relationship, we conducted the first simultaneous intracortical recordings of neural signals and BOLD responses. Depending on the temporal characteristics of the stimulus, a moderate to strong correlation was found between the neural activity measured with microelectrodes and the BOLD signal averaged over a small area around the microelectrode tips. However, the BOLD signal had significantly higher variability than the neural activity, indicating that human fMRI combined with traditional statistical methods underestimates the reliability of the neuronal activity. To understand the relative contribution of several types of neuronal signals to the haemodynamic response, we compared local field potentials (LFPs), single– and multi–unit activity (MUA) with high spatio–temporal fMRI responses recorded simultaneously in monkey visual cortex. At recording sites characterized by transient responses, only the LFP signal was significantly correlated with the haemodynamic response. Furthermore, the LFPs had the largest magnitude signal and linear systems analysis showed that the LFPs were better than the MUAs at predicting the fMRI responses. These findings, together with an analysis of the neural signals, indicate that the BOLD signal primarily measures the input and processing of neuronal information within a region and not the output signal transmitted to other brain regions.


Perception ◽  
2021 ◽  
Vol 50 (3) ◽  
pp. 249-265
Author(s):  
A. Ankeeta ◽  
S. Senthil Kumaran ◽  
Rohit Saxena ◽  
Sada N. Dwivedi ◽  
Naranamangalam R. Jagannathan

Involvement of visual cortex varies during tactile perception tasks in early blind (EB) and late blind (LB) human subjects. This study explored differences in sensory motor networks associated with tactile task in EB and LB subjects and between children and adolescents. A total of 40 EB subjects, 40 LB subjects, and 30 sighted controls were recruited in two subgroups: children (6–12 years) and adolescents (13–19 years). Data were acquired using a 3T MR scanner. Analyses of blood oxygen level dependent (BOLD), functional connectivity (FC), correlation, and post hoc test for multiple comparisons were carried out. Difference in BOLD activity was observed in EB and LB groups in visual cortex during tactile perception, with increased FC of visual with dorsal attention and sensory motor networks in EB. EB adolescents exhibited increased connectivity with default mode and salience networks when compared with LB. Functional results correlated with duration of training, suggestive of better performance in EB. Alteration in sensory and visual networks in EB and LB correlated with duration of tactile training. Age of onset of blindness has an effect in cross-modal reorganization of visual cortex in EB and multimodal in LB in children and adolescents.


2016 ◽  
Vol 36 (12) ◽  
pp. 2177-2193 ◽  
Author(s):  
Cornelia Helbing ◽  
Marta Brocka ◽  
Thomas Scherf ◽  
Michael T Lippert ◽  
Frank Angenstein

Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses.


2019 ◽  
Vol 3 ◽  
pp. 247054701984864 ◽  
Author(s):  
Khalil Thompson ◽  
Kendrick King ◽  
Eddy Nahmias ◽  
Negar Fani ◽  
Trevor Kvaran ◽  
...  

Background Social anxiety is characterized by a tendency to overestimate the likelihood of negative outcomes and consequences before, during, and after interpersonal interactions with social partners. Recent evidence suggests that a network of brain regions critical for perspective-taking, threat appraisal, and uncertainty resolution may function atypically in those prone to social anxiety. In this study, we used functional magnetic resonance imaging to examine neural activity in specific regions of interest in a sample of young adults who endorsed high or low levels of social anxiety. Methods We recruited 31 college student volunteers (age: 18–28 years), categorized as having high or low anxiety based on their Liebowitz Social Anxiety Scale-Self Report scores. These participants were each scanned while playing the iterated Prisoner’s Dilemma game with three computerized confederates, two of whom they were deceived to believe were human co-players. This study focuses on data collected during play with the presumed humans. Regions of interest were defined for the temporoparietal junction, anterior midcingulate, and dorsomedial prefrontal cortex. Average weighted mean blood-oxygen-level-dependent signals for each subject were extracted and analyzed using mixed design analyses of variance to detect group differences in activation during decision-making, anticipation, and appraisal of round outcomes during the game. Results Behavior analysis revealed that the high-anxiety group was more likely to defect than the low-anxiety group. Neuroimaging analysis showed that the high-anxiety group exhibited elevated blood-oxygen-level-dependent activity relative to the low-anxiety group in all three regions during the social feedback appraisal phase but not during decision-making or the anticipation of interaction outcomes. Conclusions These findings provide evidence that some behaviors linked to cognitive biases associated with social anxiety may be mediated by a network of regions involved in recognizing and processing directed social information. Future investigation of the neural basis of cognition and bias in social anxiety using the prisoner’s dilemma and other economic-exchange tasks is warranted. These tasks appear to be highly effective, functional magnetic resonance imaging-compatible methods of probing altered cognition and behavior associated with anxiety and related conditions.


Sign in / Sign up

Export Citation Format

Share Document