scholarly journals 5-HT and GABA Modulate Intrinsic Excitability of Type I Interneurons in Hermissenda

2009 ◽  
Vol 102 (5) ◽  
pp. 2825-2833 ◽  
Author(s):  
Nan Ge Jin ◽  
Lian-Ming Tian ◽  
Terry Crow

The sensory neurons (photoreceptors) in the visual system of Hermissenda are one site of plasticity produced by Pavlovian conditioning. A second site of plasticity produced by conditioning is the type I interneurons in the cerebropleural ganglia. Both photoreceptors and statocyst hair cells of the graviceptive system form monosynaptic connections with identified type I interneurons. Two proposed neurotransmitters in the graviceptive system, serotonin (5-HT) and γ-aminobutyric acid (GABA), have been shown to modify synaptic strength and intrinsic neuronal excitability in identified photoreceptors. However, the potential role of 5-HT and GABA in plasticity of type I interneurons has not been investigated. Here we show that 5-HT increased the peak amplitude of light-evoked complex excitatory postsynaptic potentials (EPSPs), enhanced intrinsic excitability, and increased spike activity of identified type Ie(A) interneurons. In contrast, 5-HT decreased spike activity and intrinsic excitability of type Ie(B) interneurons. The classification of two categories of type Ie interneurons was also supported by the observation that 5-HT produced opposite effects on whole cell steady-state outward currents in type Ie interneurons. Serotonin produced a reduction in the amplitude of light-evoked complex inhibitory PSPs (IPSPs), increased spontaneous spike activity, decreased intrinsic excitability, and depolarized the resting membrane potential of identified type Ii interneurons. In contrast to the effects of 5-HT, GABA produced inhibition in both types of Ie interneurons and type Ii interneurons. These results show that 5-HT and GABA can modulate the intrinsic excitability of type I interneurons independent of the presynaptic effects of the same transmitters on excitability and synaptic efficacy of photoreceptors.

1994 ◽  
Vol 644 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Naohiro Yoshida ◽  
Takashi Shigemoto ◽  
Tokio Sugai ◽  
Harunori Ohmori

Core Evidence ◽  
2012 ◽  
pp. 105 ◽  
Author(s):  
Bernard Floccard ◽  
Hautin ◽  
Laurence Bouillet ◽  
Coppere ◽  
Allaouchiche

2018 ◽  
Vol 22 (1) ◽  
pp. 211-212
Author(s):  
Hendriekje Eggink ◽  
Daan Kremer ◽  
Marina A.J. Tijssen

2008 ◽  
Vol 10 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Giovanni Vitale ◽  
Michele Caraglia ◽  
Peter M. van Koetsveld ◽  
Paola Maroni ◽  
Monica Marra ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shaun S Sanders ◽  
Luiselys M Hernandez ◽  
Heun Soh ◽  
Santi Karnam ◽  
Randall S Walikonis ◽  
...  

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14’s neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14’s importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.


1999 ◽  
Vol 6 (3) ◽  
pp. 284-291
Author(s):  
Niraj S. Desai ◽  
Lana C. Rutherford ◽  
Gina G. Turrigiano

Neocortical pyramidal neurons respond to prolonged activity blockade by modulating their balance of inward and outward currents to become more sensitive to synaptic input, possibly as a means of homeostatically regulating firing rates during periods of intense change in synapse number or strength. Here we show that this activity-dependent regulation of intrinsic excitability depends on the neurotrophin brain-derived neurotrophic factor (BDNF). In experiments on rat visual cortical cultures, we found that exogenous BDNF prevented, and a TrkB–IgG fusion protein reproduced, the change in pyramidal neuron excitability produced by activity blockade. Most of these effects were also observed in bipolar interneurons, indicating a very general role for BDNF in regulating neuronal excitability. Moreover, earlier work has demonstrated that BDNF mediates a different kind of homeostatic plasticity present in these same cultures: scaling of the quantal amplitude of AMPA-mediated synaptic inputs up or down as a function of activity. Taken together, these results suggest that BDNF may be the signal controlling a coordinated regulation of synaptic and intrinsic properties aimed at allowing cortical networks to adapt to long-lasting changes in activity.


Sign in / Sign up

Export Citation Format

Share Document