scholarly journals Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells

2017 ◽  
Vol 118 (6) ◽  
pp. 3024-3043 ◽  
Author(s):  
Mohammad Hossein Khani ◽  
Tim Gollisch

Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell’s signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell’s receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in spatial scope can contribute to the functional diversity of retinal ganglion cell types.

2011 ◽  
Vol 28 (5) ◽  
pp. 403-417 ◽  
Author(s):  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractThe rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON–OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.


2002 ◽  
Vol 19 (5) ◽  
pp. 575-581 ◽  
Author(s):  
ALINO MARTINEZ-MARCOS ◽  
ENRIQUE LANUZA ◽  
FERNANDO MARTINEZ-GARCIA

Retinal ganglion cells projecting to the optic tectum and visual thalamus have been investigated in the lizard, Podarcis hispanica. Injections of biotinylated dextran-amine in the optic tectum reveal seven morphological cell varieties including one displaced ganglion cell type. Injections in the visual thalamus yield similar ganglion cell classes plus four giant ganglion cells, including two displaced ganglion cell types. The present study constitutes the first comparison of tectal versus thalamic ganglion cell types in reptiles. The situation found in lizards is similar to that reported in mammals and birds where some cell types projecting to the thalamus are larger than those projecting to the mesencephalic roof. The presence of giant retino-thalamic ganglion cells with specific dendritic arborizations in sublaminae A and B of the inner plexiform layer suggests that parts of the visual thalamus of lizards could be implicated in movement detection, a role that might be played by the ventral lateral geniculate nucleus, which is involved in our tracer injections.


1991 ◽  
Vol 6 (3) ◽  
pp. 271-281 ◽  
Author(s):  
S.L. Pallas ◽  
B.L. Finlay

AbstractUnilateral partial ablation of the superior colliculus in the hamster results in a compression of the retinotopic map onto the remaining tectal fragment. In a previous electrophysiological study (Pallas & Finlay, 1989a), we demonstrated that receptive-field properties of single tectal units (including receptive-field size) remain unchanged, despite the increased afferent/target convergence ratios in the compressed tecta. The present study was done to investigate the mechanism that produces increased convergence from retina to tectum at the population level while maintaining apparent stability of convergence at the single neuron level. We injected comparable quantities of horseradish peroxidase into the tecta of normal adult hamsters and adult hamsters that had received neonatal partial tectal ablations of varying magnitude. We then compared the area of retina backfilled from the injection and the number and density of labeled retinal ganglion cells within it to the size of the remaining tectal fragment.As expected from earlier anatomical (Jhaveri & Schneider, 1974) and physiological (Finlay et al., 1979a; Pallas & Finlay, 1989a) studies demonstrating compression of the retinotectal projection, we found that the area of retina labeled from a single tectal injection site increases linearly with decreasing tectal fragment size. However, for fragment sizes down to 30% of normal, total number of retinal ganglion cells projecting to the injection site remains in or above the normal range. For large lesions (less than 30% of tectum remaining), total number of labeled retinal ganglion cells declines from normal, despite the fact that a larger absolute area of retina is represented on each unit of tectum under these conditions. Comparison of retinal ganglion cell density with tectal fragment size shows an initial decline with decreasing fragment size, which becomes sharper with very large lesions (small tectal fragments).The maintenance of the normal number of retinal ganglion cells innervating each patch of tectum could be accomplished by an elimination of the tectal collaterals of some retinal ganglion cells. Our results suggest that, in addition to collateral elimination, reduction in the size of ganglion cell arbors is occurring, since the peak density of backfilled ganglion cells declines less rapidly than backfilled retinal area increases, especially for small lesions. However, arbor reduction and collateral elimination must occur in such a way that individual tectal cells represent the same amount of visual space as normal.Thus, collateral elimination and arbor reduction are two mechanisms that operate to maintain afferent/target convergence ratios (and thus receptive-field properties) over large variations in afferent availability. This compensation may occur through an activity-dependent stabilization mechanism that does not change its selectivity even when excess afferents are available. For very large lesion sizes, receptive-field size and innervating ganglion cell number and density are not preserved, thus demonstrating a limit to the afferent/target matching mechanism. The same ontogenetic mechanisms might provide a buffer for normal variations in afferent populations, and could help to align topographic maps with differing numbers of afferents.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhong Fu ◽  
Ying Wang ◽  
Xinyuan Gao ◽  
Huiyao Li ◽  
Yue Yuan

Background. Diabetic retinopathy (DR) is a severe complication of diabetes mellitus. DR is considered as a neurovascular disease. Retinal ganglion cell (RGC) loss plays an important role in the vision function disorder of diabetic patients. Histone deacetylase3 (HDAC3) is closely related to injury repair and nerve regeneration. The correlation between HDAC3 and retinal ganglion cells in diabetic retinopathy is still unclear yet. Methods. To investigate the chronological sequence of the abnormalities of retinal ganglion cells in diabetic retinopathy, we choose 15 male db/db mice (aged 8 weeks, 12 weeks, 16 weeks, 18 weeks, and 25 weeks; each group had 3 mice) as diabetic groups and 3 male db/m mice (aged 8 weeks) as the control group. In this study, we examined the morphological and immunohistochemical changes of HDAC3, Caspase3, and LC3B in a sequential manner by characterizing the process of retinal ganglion cell variation. Results. Blood glucose levels and body weights of db/db mice were significantly higher than that of the control group, P<0.01. Compared with the control group, the number of retinal ganglion cells decreased with the duration of disease increasing. HDAC3 expression gradually increased in RGCs of db/db mice. Caspase3 expression gradually accelerated in RGCs of db/db mice. LC3B expression dynamically changed in RGCs of db/db mice. HDAC3 was positively correlated with Caspase3 expression (r=0.7424), P<0.01. HDAC3 was positively correlated with LC3B expression (r=0.7336), P<0.01. Discussion. We clarified the dynamic expression changes of HDAC3, Caspase3, and LC3B in retinal ganglion cells of db/db mice. Our results suggest the HDAC3 expression has a positive correlation with apoptosis and autophagy.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 77-92
Author(s):  
S. C. Sharma ◽  
J. G. Hollyfield

The specification of central connexions of retinal ganglion cells was studied in Xenopus laevis. In one series of experiments, the right eye primordium was rotated 180° at embryonic stages 24–32. In the other series, the left eye was transplanted into the right orbit, and vice versa, with either 0° or 180° rotation. After metamorphosis the visual projections from the operated eye to the contralateral optic tectum were mapped electrophysiologically and compared with the normal retinotectal map. In all cases the visual projection map was rotated through the same angle as was indicated by the position of the choroidal fissure. The left eye exchanged into the right orbit retained its original axes and projected to the contralateral tectum. These results suggest that retinal ganglion cell connexions are specified before stage 24.


2001 ◽  
Vol 18 (4) ◽  
pp. 559-570 ◽  
Author(s):  
B.E. REESE ◽  
M.A. RAVEN ◽  
K.A. GIANNOTTI ◽  
P.T. JOHNSON

The present study has examined the emergence of cholinergic stratification within the developing inner plexiform layer (IPL), and the effect of ablating the cholinergic amacrine cells on the formation of other stratifications within the IPL. The population of cholinergic amacrine cells in the ferret's retina was identified as early as the day of birth, but their processes did not form discrete strata until the end of the first postnatal week. As development proceeded over the next five postnatal weeks, so the positioning of the cholinergic strata shifted within the IPL toward the outer border, indicative of the greater ingrowth and elaboration of processes within the innermost parts of the IPL. To examine whether these cholinergic strata play an instructive role upon the development of other stratifications which form within the IPL, one-week-old ferrets were treated with l-glutamate in an attempt to ablate the population of cholinergic amacrine cells. Such treatment was shown to be successful, eliminating all of the cholinergic amacrine cells as well as the alpha retinal ganglion cells in the central retina. The remaining ganglion cell classes as well as a few other retinal cell types were partially reduced, while other cell types were not affected, and neither retinal histology nor areal growth was compromised in these ferrets. Despite this early loss of the cholinergic amacrine cells, which are eliminated within 24 h, other stratifications within the IPL formed normally, as they do following early elimination of the entire ganglion cell population. While these cholinergic amacrine cells are present well before other cell types have differentiated, apparently neither they, nor the ganglion cells, play a role in determining the depth of stratification for other retinal cell types.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michal Geva ◽  
Noga Gershoni-Emek ◽  
Luana Naia ◽  
Philip Ly ◽  
Sandra Mota ◽  
...  

AbstractOptic neuropathies such as glaucoma are characterized by retinal ganglion cell (RGC) degeneration and death. The sigma-1 receptor (S1R) is an attractive target for treating optic neuropathies as it is highly expressed in RGCs, and its absence causes retinal degeneration. Activation of the S1R exerts neuroprotective effects in models of retinal degeneration. Pridopidine is a highly selective and potent S1R agonist in clinical development. We show that pridopidine exerts neuroprotection of retinal ganglion cells in two different rat models of glaucoma. Pridopidine strongly binds melanin, which is highly expressed in the retina. This feature of pridopidine has implications to its ocular distribution, bioavailability, and effective dose. Mitochondria dysfunction is a key contributor to retinal ganglion cell degeneration. Pridopidine rescues mitochondrial function via activation of the S1R, providing support for the potential mechanism driving its neuroprotective effect in retinal ganglion cells.


2019 ◽  
Vol 486 (2) ◽  
pp. 258-261
Author(s):  
L. E. Petrovskaya ◽  
M. V. Roshchin ◽  
G. R. Smirnova ◽  
D. E. Kolotova ◽  
P. M. Balaban ◽  
...  

For the purpose of optogenetic prosthetics of the receptive field of the retinal ganglion cell, we have created a bicistronic genetic construct that carries genes of excitatory (channelorhodopsin2) and inhibitory (anionic channelorhodopsin) rhodopsins. A distinctive feature of this construct is the combination of two genes into one construct with the mutant IRES inserted between them, which ensures precise ratio of the expression levels of the first and second gene in each transfected cell. It was found that the illumination of the central part of transfected neuron with light with a wavelength of 470 nm causes the generation of action potentials in the cell. At the same time, light stimulation of the periphery of the neuron causes cessation of the generation of action potentials. Thus, we were able to simulate the ON-OFF interaction of the receptive field of the retinal ganglion cell using optogenetic methods. Theoretically, this construction can be used for optogenetic prosthetics of degenerative retina in case of its delivery to ganglion cells using lentiviral vectors.


Sign in / Sign up

Export Citation Format

Share Document