scholarly journals Selective modulation of GABAergic tonic current by dopamine in the nucleus accumbens of alcohol-dependent rats

2014 ◽  
Vol 112 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Jing Liang ◽  
Vincent N. Marty ◽  
Yatendra Mulpuri ◽  
Richard W. Olsen ◽  
Igor Spigelman

The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Alterations in glutamatergic and GABAergic signaling were recently demonstrated in the NAcc of rats after chronic intermittent ethanol (CIE) treatment, a model of alcohol dependence. Here we studied dopamine (DA) modulation of GABAergic signaling and how this modulation might be altered by CIE treatment. We show that the tonic current ( Itonic) mediated by extrasynaptic γ-aminobutyric acid type A receptors (GABAARs) of medium spiny neurons (MSNs) in the NAcc core is differentially modulated by DA at concentrations in the range of those measured in vivo (0.01–1 μM), without affecting the postsynaptic kinetics of miniature inhibitory postsynaptic currents (mIPSCs). Use of selective D1 receptor (D1R) and D2 receptor (D2R) ligands revealed that Itonic potentiation by DA (10 nM) is mediated by D1Rs while Itonic depression by DA (0.03–1 μM) is mediated by D2Rs in the same MSNs. Addition of guanosine 5′- O-(2-thiodiphosphate) (GDPβS) to the recording pipettes eliminated Itonic decrease by the selective D2R agonist quinpirole (5 nM), leaving intact the quinpirole effect on mIPSC frequency. Recordings from CIE and vehicle control (CIV) MSNs during application of D1R agonist (SKF 38393, 100 nM) or D2R agonist (quinpirole, 2 nM) revealed that SKF 38393 potentiated Itonic to the same extent, while quinpirole reduced Itonic to a similar extent, in both groups of rats. Our data suggest that the selective modulatory effects of DA on Itonic are unaltered by CIE treatment and withdrawal.

2014 ◽  
Vol 112 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Jing Liang ◽  
A. Kerstin Lindemeyer ◽  
Asha Suryanarayanan ◽  
Edward M. Meyer ◽  
Vincent N. Marty ◽  
...  

Chronic alcohol exposure-induced changes in reinforcement mechanisms and motivational state are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Here we describe the long-lasting alterations of γ-aminobutyric acid type A receptors (GABAARs) of medium spiny neurons (MSNs) in the NAcc after chronic intermittent ethanol (CIE) treatment, a rat model of alcohol dependence. CIE treatment and withdrawal (>40 days) produced decreases in the ethanol and Ro15-4513 potentiation of extrasynaptic GABAARs, which mediate the picrotoxin-sensitive tonic current ( Itonic), while potentiation of synaptic receptors, which give rise to miniature inhibitory postsynaptic currents (mIPSCs), was increased. Diazepam sensitivity of both Itonic and mIPSCs was decreased by CIE treatment. The average magnitude of Itonic was unchanged, but mIPSC amplitude and frequency decreased and mIPSC rise time increased after CIE treatment. Rise-time histograms revealed decreased frequency of fast-rising mIPSCs after CIE treatment, consistent with possible decreases in somatic GABAergic synapses in MSNs from CIE rats. However, unbiased stereological analysis of NeuN-stained NAcc neurons did not detect any decreases in NAcc volume, neuronal numbers, or neuronal cell body volume. Western blot analysis of surface subunit levels revealed selective decreases in α1 and δ and increases in α4, α5, and γ2 GABAAR subunits after CIE treatment and withdrawal. Similar, but reversible, alterations occurred after a single ethanol dose (5 g/kg). These data reveal CIE-induced long-lasting neuroadaptations in the NAcc GABAergic neurotransmission.


2019 ◽  
Author(s):  
Dillon S. McDevitt ◽  
Benjamin Jonik ◽  
Nicholas M. Graziane

AbstractExposure to opioids reshapes future reward and motivated behaviors partially by altering the functional output of medium spiny neurons (MSNs) in the nucleus accumbens shell. Here, we investigated how morphine, a highly addictive opioid, alters synaptic transmission and intrinsic excitability on dopamine D1-receptor (D1R) expressing and dopamine D2-receptor (D2R) expressing MSNs, the two main output neurons in the nucleus accumbens shell. Using whole-cell electrophysiology recordings, we show, that 24 h abstinence following repeated non-contingent administration of morphine (10 mg/kg, i.p.) in mice reduces miniature excitatory postsynaptic current (mEPSC) frequency and miniature inhibitory postsynaptic current (mIPSC) frequency on D2R-MSNs, with concomitant increases in D2R-MSN intrinsic membrane excitability. We did not observe any changes on synaptic or intrinsic changes on D1R-MSNs. Lastly, in an attempt to determine the integrated effect of the synaptic and intrinsic alterations on the overall functional output of D2R-MSNs, we measured the input-output efficacy by measuring synaptically-driven action potential firing. We found that both D1R-MSN and D2R-MSN output was unchanged following morphine treatment.


2022 ◽  
Author(s):  
Tadaaki Nishioka ◽  
Tom Macpherson ◽  
Kosuke Hamaguchi ◽  
Takatoshi Hikida

Abstract Learnt associations between environmental cues and the outcomes they predict (cue-outcome associations) play a major role in behavioral control, guiding not only which responses we should perform, but also which we should avoid, in order to achieve a specific goal. The encoding of such cue-outcome associations, as well as the performance of cue-guided goal-directed behavior, is thought to involve dopamine D1 and D2 receptor-expressing medium spiny neurons (D1-/D2-MSNs) of the nucleus accumbens (NAc). Here, using a visual discrimination task in mice, we assessed the role of NAc D1-/D2-MSNs in cue-guided goal-directed avoidance of inappropriate responding. Cell-type specific neuronal silencing and in-vivo imaging revealed NAc D2-MSNs to selectively contribute to cue-guided avoidance behavior, with activation of NAc D2-MSNs following response error playing an important role in optimizing future goal-directed behavior. Our findings indicate that error-signaling by NAc D2-MSNs underlies the ability to use environmental cues to avoid inappropriate behavior.


2022 ◽  
Author(s):  
Bridget A Matikainen-Ankney ◽  
Alex A Legaria ◽  
Yvan M Vachez ◽  
Caitlin A Murphy ◽  
Yiyan A Pan ◽  
...  

Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. In addition to homeostatic feeding mechanisms, there is growing recognition of the involvement of food reward and motivation in the development of obesity. However, it remains unclear how brain circuits that control food reward and motivation are altered in obese animals. Here, we tested the hypothesis that signaling through pro-motivational circuits in the core of the nucleus accumbens (NAc) is enhanced in the obese state, leading to invigoration of food seeking. Using a novel behavioral assay that quantifies physical work during food seeking, we confirmed that obese mice work harder than lean mice to obtain food, consistent with an increase in the relative reinforcing value of food in the obese state. To explain this behavioral finding, we recorded neural activity in the NAc core with both in vivo electrophysiology and cell-type specific calcium fiber photometry. Here we observed greater activation of D1-receptor expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. With ex vivo slice physiology we identified both pre- and post-synaptic mechanisms that contribute to this enhancement in NAc D1SPN activity in obese mice. Finally, blocking synaptic transmission from D1SPNs decreased physical work during food seeking and attenuated high-fat diet-induced weight gain. These experiments demonstrate that obesity is associated with a selective increase in the activity of D1SPNs during food seeking, which enhances the vigor of food seeking. This work also establishes the necessity of D1SPNs in the development of diet-induced obesity, identifying a novel potential therapeutic target.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jenya Kolpakova ◽  
Vincent van der Vinne ◽  
Pablo Giménez-Gómez ◽  
Timmy Le ◽  
In-Jee You ◽  
...  

The nucleus accumbens (NAc) is a forebrain region mediating the positive-reinforcing properties of drugs of abuse, including alcohol. It receives glutamatergic projections from multiple forebrain and limbic regions such as the prefrontal cortex (PFCx) and basolateral amygdala (BLA), respectively. However, it is unknown how NAc medium spiny neurons (MSNs) integrate PFCx and BLA inputs, and how this integration is affected by alcohol exposure. Because progress has been hampered by the inability to independently stimulate different pathways, we implemented a dual wavelength optogenetic approach to selectively and independently stimulate PFCx and BLA NAc inputs within the same brain slice. This approach functionally demonstrates that PFCx and BLA inputs synapse onto the same MSNs where they reciprocally inhibit each other pre-synaptically in a strict time-dependent manner. In alcohol-naïve mice, this temporal gating of BLA-inputs by PFCx afferents is stronger than the reverse, revealing that MSNs prioritize high-order executive processes information from the PFCx. Importantly, binge alcohol drinking alters this reciprocal inhibition by unilaterally strengthening BLA inhibition of PFCx inputs. In line with this observation, we demonstrate that in vivo optogenetic stimulation of the BLA, but not PFCx, blocks binge alcohol drinking escalation in mice. Overall, our results identify NAc MSNs as a key integrator of executive and emotional information and show that this integration is dysregulated during binge alcohol drinking.


2016 ◽  
Author(s):  
Tom Macpherson ◽  
Claire I Dixon ◽  
Patricia H. Janak ◽  
Delia Belelli ◽  
Jeremy J. Lambert ◽  
...  

Abstract:Extrasynaptic GABAA receptors (GABAARs) composed of α4, β and δ subunits mediate GABAergic tonic inhibition and are pertinent molecular targets in the modulation of behavioural responses to drugs of abuse, including ethanol and cocaine. These GABAARs are highly expressed within the nucleus accumbens (NAc) where they influence the excitability of the medium spiny neurons (MSNs). Here we explore their role in modulating behavioural responses to reward-conditioned cues and the behaviour-potentiating effects of cocaine. α4-subunit constitutive knockout mice (α4-/-) showed higher rates of instrumental responding for reward-paired stimuli in a test of conditioned reinforcement (CRf). A similar effect was seen following viral knockdown of GABAAR α4 subunits within the NAc. Local infusion of the δ-GABAAR-preferring agonist, THIP, into the NAc had no effect on responding when given alone, but reduced cocaine potentiation of responding for conditioned reinforcers in wildtype but not α4-/- mice. Finally, specific deletion of α4-subunits from dopamine D2-, but not D1-receptor-expressing neurons, mimicked the phenotype of the constitutive knockout, potentiating CRf responding and blocking intra-accumbal THIP attenuation of cocaine-potentiated CRf responding. These data demonstrate that α4-GABAAR mediated inhibition of dopamine D2 receptor-expressing neurons reduces instrumental-responding for a conditioned reinforcer, and its potentiation by cocaine, and emphasise the potential importance of GABAergic signalling within the NAc in mediating cocaine’s effects.


Author(s):  
Jeffrey Parrilla-Carrero ◽  
Anna Kruyer ◽  
Reda M. Chalhoub ◽  
Courtney Powell ◽  
Shanna Resendez ◽  
...  

Abstract D2 receptor blockade has been cited as a principal mechanism of action of all antipsychotic medications, but is poorly predictive of symptom improvement or neurophysiological responses recorded using human brain imaging. A potential hurdle in interpreting such human imaging studies arises from the inability to distinguish activity within neuronal subcircuits. We used single cell resolution imaging to record activity in distinct populations of medium spiny neurons in vivo within the mouse ventral striatum, a structure associated with schizophrenia symptoms and antipsychotic therapeutic efficacy. While we expected the antipsychotic haloperidol to excite D2 receptor expressing neurons, we report a strong cellular depression mediated by the hypofunctional NMDA channel, which may be mediated in part by the action of haloperidol on the sigma1 receptor. Altogether, the impact of haloperidol on Ca2+ events in D2 receptor expressing neurons predicted psychomotor inhibition. Our results elucidate mechanisms by which antipsychotics act rapidly in the brain to impact psychomotor outputs.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Daisuke Sato ◽  
Michiko Narita ◽  
Yusuke Hamada ◽  
Tomohisa Mori ◽  
Kenichi Tanaka ◽  
...  

AbstractEmerging evidence suggests that the mesolimbic dopaminergic network plays a role in the modulation of pain. As chronic pain conditions are associated with hypodopaminergic tone in the nucleus accumbens (NAc), we evaluated the effects of increasing signaling at dopamine D1/D2-expressing neurons in the NAc neurons in a model of neuropathic pain induced by partial ligation of sciatic nerve. Bilateral microinjection of either the selective D1-receptor (Gs-coupled) agonist Chloro-APB or the selective D2-receptor (Gi-coupled) agonist quinpirole into the NAc partially reversed nerve injury-induced thermal allodynia. Either optical stimulation of D1-receptor-expressing neurons or optical suppression of D2-receptor-expressing neurons in both the inner and outer substructures of the NAc also transiently, but significantly, restored nerve injury-induced allodynia. Under neuropathic pain-like condition, specific facilitation of terminals of D1-receptor-expressing NAc neurons projecting to the VTA revealed a feedforward-like antinociceptive circuit. Additionally, functional suppression of cholinergic interneurons that negatively and positively control the activity of D1- and D2-receptor-expressing neurons, respectively, also transiently elicited anti-allodynic effects in nerve injured animals. These findings suggest that comprehensive activation of D1-receptor-expressing neurons and integrated suppression of D2-receptor-expressing neurons in the NAc may lead to a significant relief of neuropathic pain.


Author(s):  
Richard J. Beninger

Mechanisms of dopamine-mediated incentive learning explains how sensory events, resulting from an animal’s movement and the environment, activate cortical glutamatergic projections to dendritic spines of striatal medium spiny neurons to initiate a wave of phosphorylation. If no rewarding stimulus is encountered, a subsequent wave of phosphatase activity undoes the phosphorylation. If a rewarding stimulus is encountered, dopamine initiates a cascade of events in D1 receptor-expressing medium spiny neurons that may prevent the phosphatase effects and work synergistically with signaling events produced by glutamate. As a result, corticostriatal synapses have a greater impact on response systems; this may be part of the mechanism of incentive learning. Dopamine acting on dendritic spines of D2 receptor-expressing medium spiny neurons may prevent synaptic strengthening by inhibiting adenosine signaling; these synapses may be weakened through mechanisms involving endocannabinoids. When dopamine concentrations drop, e.g. during negative prediction errors, the opposite may occur, producing inverse incentive learning.


Sign in / Sign up

Export Citation Format

Share Document