Localization of Spinal Neurons Activated During Locomotion Using the c-fos Immunohistochemical Method

2005 ◽  
Vol 93 (6) ◽  
pp. 3442-3452 ◽  
Author(s):  
X. Dai ◽  
B. R. Noga ◽  
J. R. Douglas ◽  
L. M. Jordan

The c-fos immunohistochemical method of activity-dependent labeling was used to localize locomotor-activated neurons in the adult cat spinal cord. In decerebrate cats, treadmill locomotion was evoked by electrical stimulation of the mesencephalic locomotor region (MLR). Spontaneous or MLR-evoked fictive locomotion was produced in decerebrate animals paralyzed with a neuromuscular blocking agent. After bouts of locomotion during a 7- to 9-h time period, the animals were perfused and the L3–S1 spinal cord segments removed for immunohistochemistry. Control animals were subjected to the same surgical procedures but no locomotor task. Labeled cells were concentrated in Rexed's laminae III and IV of the dorsal horn and laminae VII, VIII, and X of the intermediate zone/ventral horn after treadmill locomotion. Cells in laminae VII, VIII, and X were labeled after fictive locomotion, but labeling in the dorsal horn was much reduced. In control animals, c- fos labeling was a small fraction of that observed in the locomotor animals. The results suggest that labeled cells in laminae VII, VIII, and X are premotor interneurons involved in the production of locomotion, whereas the laminae III and IV cells are those activated during locomotion due to afferent feedback from the moving limb. c-fos-labeled cells were most numerous in the L5–L7 segments, consistent with the distribution of locomotor activated neurons detected through the use of MLR-evoked field potentials.

1996 ◽  
Vol 84 (6) ◽  
pp. 992-998 ◽  
Author(s):  
Thomas H. Milhorat ◽  
Harrison T. M. Mu ◽  
Carole C. LaMotte ◽  
Ade T. Milhorat

✓ The distribution of substance P, a putative neurotransmitter and pain-related peptide, was studied using the peroxidase—antiperoxidase immunohistochemical method in the spinal cords obtained from autopsy of 10 patients with syringomyelia and 10 age- and sex-matched, neurologically normal individuals. Substance P immunoreactivity was present in axons and in terminal-like processes in close apposition to neurons in the first, second, and third laminae of the dorsal horn. Smaller amounts of peroxidase-positive staining were found in the fifth lamina of the dorsal horn, the intermediolateral nucleus, the intermediomedial nucleus, and the ventral horn. In nine of 10 patients with syringomyelia, there was a substantial increase in substance P immunoreactivity in the first, second, third, and fifth laminae below the level of the lesion. A marked reduction or absence of staining was present in segments of the spinal cord occupied by the syrinx. Central cavities produced bilateral abnormalities, whereas eccentric cavities produced changes that were ipsilateral to the lesion. No alterations in staining were found in the spinal cord of an asymptomatic patient with a small central syrinx. The authors conclude that syringomyelia can be associated with abnormalities in spinal cord levels of substance P, which may affect the modulation and perception of pain.


2010 ◽  
Vol 1 (1) ◽  
Author(s):  
Sarah Galley ◽  
Gavin Clowry

AbstractA CST-YFP transgenic mouse has been developed for the study of the corticospinal tract in which yellow fluorescent protein is expressed under the control of thy1 and emx1 promoters in order to restrict expression to forebrain neurones. We explored plasticity of the developing corticospinal tract of these mice following a unilateral lesion to the sensorimotor cortex at postnatal day 7. The extent of innervation of the cervical spinal cord at time points post-lesion was assessed by measuring density of immunoperoxidase reactivity for yellow fluorescent protein in the dorsal funiculi and a defined region of each dorsal horn, and by counting immunoreactive axonal varicosities in the ventral horns. Two/three days post-lesion, the density of immunoreactivity in the dorsal horn contralateral to the lesion was reduced proportional to the decrease in positive fibres in the dorsal funiculus, however density of immunoreactive varicosities in the ventral horn was more resistant to loss. Over a three week period, immunoreactive axonal processes in the grey matter increased on the contralateral side, particularly in the ventral horn, but without an increase in immunopositive fibres in the contralateral dorsal funiculus, demonstrating sprouting of surviving immunoreactive fibres to replace lesioned corticospinal axons. However, the origin of sprouting fibres could not be identified with confidence as parallel observations revealed strongly immunoreactive neuronal cell bodies in the spinal cord, medulla and red nucleus. We have demonstrated plasticity in response to a developmental lesion but discovered a drawback to using these mice if visualisation of individual axons is enhanced by immunohistochemistry.


2000 ◽  
Vol 279 (2) ◽  
pp. R394-R403 ◽  
Author(s):  
A. M. Degtyarenko ◽  
M. P. Kaufman

In decerebrate paralyzed cats, we examined the effects of two central motor commands (fictive locomotion and scratching) on the discharge of dorsal horn neurons receiving input from group III and IV tibial nerve afferents. We recorded the impulse activity of 74 dorsal horn neurons, each of which received group III input from the tibial nerve. Electrical stimulation of the mesencephalic locomotor region (MLR), which evoked fictive static contraction or fictive locomotion, inhibited the discharge of 44 of the 64 dorsal horn neurons tested. The mean depth from the dorsal surface of the spinal cord of the 44 neurons whose discharge was inhibited by MLR stimulation was 1.77 ± 0.04 mm. Fictive scratching, evoked by topical application of bicuculline to the cervical spinal cord and irritation of the ear, inhibited the discharge of 22 of the 29 dorsal horn neurons tested. Fourteen of the twenty-two neurons whose discharge was inhibited by fictive scratching were found to be inhibited by MLR stimulation as well. The mean depth from the dorsal surface of the cord of the 22 neurons whose discharge was inhibited by fictive scratching was 1.77 ± 0.06 mm. Stimulation of the MLR or the elicitation of fictive scratching had no effect on the activity of 22 dorsal horn neurons receiving input from group III and IV tibial nerve afferents. The mean depth from the dorsal surface of the cord was 1.17 ± 0.07 mm, a value that was significantly ( P < 0.05) less than that for the neurons whose discharge was inhibited by either MLR stimulation or fictive scratching. We conclude that centrally evoked motor commands can inhibit the discharge of dorsal horn neurons receiving thin fiber input from the periphery.


2007 ◽  
Vol 22 (6) ◽  
pp. 485-494 ◽  
Author(s):  
João Gabriel Martins Dallo ◽  
Bernardo Vergara Reichert ◽  
José Benedito Ramos Valladão Júnior ◽  
Camila Silva ◽  
Bianca Aparecida de Luca ◽  
...  

PURPOSE: Reactive astrocytes are implicated in several mechanisms after central or peripheral nervous system lesion, including neuroprotection, neuronal sprouting, neurotransmission and neuropathic pain. Schwann cells (SC), a peripheral glia, also react after nerve lesion favoring wound/repair, fiber outgrowth and neuronal regeneration. We investigated herein whether cell therapy for repair of lesioned sciatic nerve may change the pattern of astroglial activation in the spinal cord ventral or dorsal horn of the rat. METHODS: Injections of a cultured SC suspension or a lesioned spinal cord homogenized extract were made in a reservoir promoted by a contiguous double crush of the rat sciatic nerve. Local injection of phosphate buffered saline (PBS) served as control. One week later, rats were euthanized and spinal cord astrocytes were labeled by immunohistochemistry and quantified by means of quantitative image analysis. RESULTS: In the ipsilateral ventral horn, slight astroglial activations were seen after PBS or SC injections, however, a substantial activation was achieved after cord extract injection in the sciatic nerve reservoir. Moreover, SC suspension and cord extract injections were able to promote astroglial reaction in the spinal cord dorsal horn bilaterally. Conclusion: Spinal cord astrocytes react according to repair processes of axotomized nerve, which may influence the functional outcome. The event should be considered during the neurosurgery strategies.


2004 ◽  
Vol 92 (3) ◽  
pp. 1796-1806 ◽  
Author(s):  
Gonzalo Viana Di Prisco ◽  
Simon Alford

Locomotor pattern generation requires the network coordination of spinal ventral horn neurons acting in concert with the oscillatory properties of individual neurons. In the spinal cord, N-methyl-d-aspartate (NMDA) activates neuronal oscillators that are believed to rely on Ca2+ entry to the cytosol through voltage-operated Ca2+ channels and synaptically activated NMDA receptors. Ca2+ signaling in lamprey ventral horn neurons thus plays a determinant role in the regulation of the intrinsic membrane properties and network synaptic interaction generating spinal locomotor neural pattern activity. We have characterized aspects of this signaling quantitatively for the first time. Resting Ca2+ concentrations were between 87 and 120 nM. Ca2+ concentration measured during fictive locomotion increased from soma to distal dendrites [from 208 ± 27 (SE) nM in the soma to 335 ± 41 nM in the proximal dendrites to 457 ± 68 nM in the distal dendrites]. We sought to determine the temporal and spatial properties of Ca2+ oscillations, imaged with Ca2+-sensitive dyes and correlated with fluctuations in membrane potential, during lamprey fictive locomotion. The Ca2+ signals recorded in the dendrites showed a great deal of spatial heterogeneity. Rapid changes in Ca2+-induced fluorescence coincided with action potentials, which initiated significant Ca2+ transients distributed throughout the neurons. Ca2+ entry to the cytosol coincided with the depolarizing phase of the locomotor rhythm. During fictive locomotion, larger Ca2+ oscillations were recorded in dendrites compared with somata in motoneurons and premotor interneurons. Ca2+ fluctuations were barely detected with dyes of lower affinity providing alternative empirical evidence that Ca2+ responses are limited to hundreds of nanomolars during fictive locomotion.


2016 ◽  
Author(s):  
Falk Eippert ◽  
Yazhuo Kong ◽  
Anderson M. Winkler ◽  
Jesper L. Andersson ◽  
Jürgen Finsterbusch ◽  
...  

AbstractThe study of spontaneous fluctuations in the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord. Two ultra-high field functional magnetic resonance imaging (fMRI) studies in humans have provided evidence for reproducible resting-state connectivity between the dorsal horns as well as between the ventral horns, and a study in non-human primates has shown that these resting-state signals are impacted by spinal cord injury. As these studies were carried out at ultra-high field strengths using region-of-interest (ROI) based analyses, we investigated whether such resting-state signals could also be observed at the clinically more prevalent field strength of 3T. In a reanalysis of a sample of 20 healthy human participants who underwent a resting-state fMRI acquisition of the cervical spinal cord, we were able to observe significant dorsal horn connectivity as well as ventral horn connectivity, but no consistent effects for connectivity between dorsal and ventral horns, thus replicating the human 7T results. These effects were not only observable when averaging along the acquired length of the spinal cord, but also when we examined each of the acquired spinal segments separately, which showed similar patterns of connectivity. Finally, we investigated the robustness of these resting-state signals against variations in the analysis pipeline by varying the type of ROI creation, temporal filtering, nuisance regression and connectivity metric. We observed that – apart from the effects of band-pass filtering – ventral horn connectivity showed excellent robustness, whereas dorsal horn connectivity showed moderate robustness. Together, our results provide evidence that spinal cord resting-state connectivity is a robust and spatially consistent phenomenon that could be a valuable tool for investigating the effects of pathology, disease progression, and treatment response in neurological conditions with a spinal component, such as spinal cord injury.


1996 ◽  
Vol 84 (1) ◽  
pp. 143-154 ◽  
Author(s):  
Herve Bouaziz ◽  
Chuanyao Tong ◽  
Young Yoon ◽  
David D. Hood ◽  
James C. Eisenach

Background Opioids produce analgesia by direct effects as well as by activating neural pathways that release nonopioid transmitters. This study tested whether systematically administered opioids activate descending spinal noradrenergic and cholinergic pathways. Methods The effect of intravenous morphine on cerebrospinal fluid and dorsal horn microdialysate concentrations of norepinephrine and acetylcholine was examined in 20 sheep. Animals received either intravenous morphine or fentanyl alone, or morphine plus intravenous naloxone or intrathecal idazoxan. Results Intravenous morphine (0, 0.5, 1 mg/kg, intravenous) produced dose-dependent increases in cerebrospinal fluid norepinephrine and acetylcholine, but not epinephrine or dopamine. Morphine's effect was blocked by intravenous naloxone and by intrathecal idazoxan. In microdialysis experiments, intravenous morphine increased the concentration of norepinephrine and acetylcholine, but not epinephrine or dopamine, in the dorsal horn. In contrast, intravenous morphine exerted no effect on any of these monoamines in the ventral horn. Intravenous naloxone and cervical cord transection each blocked morphine's effect on dorsal horn norepinephrine. Conclusions These results support functional studies that indicate that systematically administered opioids cause spinal norepinephrine and acetylcholine release by a naloxone-sensitive mechanism. Idazoxan blockade of morphine's effects on cerebrospinal fluid norepinephrine was unexpected, and suggests that both norepinephrine and acetylcholine release in the spinal cord may be regulated by alpha 2-adrenoceptors. Microdialysis experiments suggest increased norepinephrine and acetylcholine levels in cerebrospinal fluid resulted from intravenous morphine-induced activation of bulbospinal pathways.


2007 ◽  
Vol 98 (2) ◽  
pp. 786-793 ◽  
Author(s):  
M. L. Olsen ◽  
S. L. Campbell ◽  
H. Sontheimer

Neuronal activity in the spinal cord results in extracellular potassium accumulation that is significantly higher in the dorsal horn than in the ventral horn. This is suggestive of differences in K+ clearance, widely thought to involve diffusional K+ uptake by astrocytes. We previously identified the inward rectifying K+ channel Kir4.1 as the major K+ conductance in spinal cord astrocytes in situ and hence hypothesized that different expression levels of Kir4.1 may account for the observed differences in potassium dynamics in spinal cord. Our results with immunohistochemical staining demonstrated highest Kir4.1 channel expression in the ventral horn and very low levels of Kir4.1 in the apex of the dorsal horn. Western blots from tissue of these two regions similarly confirmed much lower levels of Kir4.1 in the apex of the dorsal horn. Whole cell patch-clamp recordings from astrocytes in rat spinal cord slices also showed a difference in inwardly rectifying currents in these two regions. However, no statistical difference in either fast-inactivating (Ka) or delayed rectifying potassium currents (Kd) was observed, suggesting these differences were specific to Kir currents. Importantly, when astrocytes in each region were challenged with high [K+]o, astrocytes from the dorsal horn showed significantly smaller (60%) K+ uptake currents than astrocytes from the ventral horn. Taken together, these data support the conclusion that regional differences in astrocytic expression of Kir4.1 channels result in marked changes in potassium clearance rates in these two regions of the spinal cord.


1997 ◽  
Vol 6 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Ling Chen ◽  
Kayoko Hamaguchi ◽  
Shun Hamada ◽  
Nobuo Okado

Previous studies in our laboratory /3,17/ have demonstrated that serotonin (5-HT) appears to have a trophic-like effect in enhancing synapse formation and maintenance in both the developing and the adult central nervous system. In the present study, we focused on age-related changes in the density of the axosomatic and axodendritic synapses and the number of 5-HT-positive fibers in the chicken spinal cord, with special reference to differences between the ventral (laminae VII and IX) and the dorsal (lamina I) horn. At 1 week posthatching (PIW), a transient overproduction of synapses and 5-HT-immunoreactive fibers occurred in lamina IX; all parameters had returned to their initial levels by 1 month post-hatching (PIM). The density of synapses further decreased by about 40% between P6M and P2Y (2 years posthatching). Although the magnitude of the transient increase in lamina VII was less than that in lamina IX, the changing pattern of the synapses and the 5-HT-positive fibers was similar in both regions. In the ventral horn, thin 5-HT-positive fibers were most prominent at P1W and then decreased with development; thin 5-HT-positive fibers were still found at P6M but had almost disappeared by P2Y. By contrast, at P2Y the density of the synapses and the 5-HT-positive fibers in the dorsal horn was even higher than that of younger animals.Reduction of 5-HT levels in P2Y-old chickens by p-chlorophenylalanine (pCPA) administration decreased the synaptic density in lamina I but not in lamina IX. The results of this study demonstrate that 5-HT-mediated synaptic plasticity is markedly different in the ventral and dorsal horns of the aged chicken. In the ventral horn, synaptic plasticity reached a maximum at about P1W, remained stable in the young-adult period, and then finally disappeared in the aged chicken. Conversely, the results suggest that in the dorsal horn, 5-HT fibers continue to mediate the trophic influence on synaptic plasticity even in the old chicken.


Sign in / Sign up

Export Citation Format

Share Document