Interjoint Coordination in the Stick Insect Leg-Control System: The Role of Positional Signaling

2003 ◽  
Vol 89 (3) ◽  
pp. 1245-1255 ◽  
Author(s):  
Dirk Bucher ◽  
Turgay Akay ◽  
Ralph A. DiCaprio ◽  
Ansgar Büschges

Interjoint coordination is essential for proper walking behavior in multi-jointed insect legs. We have shown previously that movement signals from the femur-tibia (FT) joint can shape motor activity of the adjacent coxa-trochanter (CT) joint in the stick insect, Carausius morosus. Here, we present data on the role of position signals from the FT-joint on activity generated in motoneurons (MNs) of the CT-joint. We show that the probability of occurrence of stance (with depression in the CT-joint) or swing movements (with levation in the CT-joint) at the start of walking sequences is influenced by the angle of the FT-joint in the resting animal. We tested the influence of FT-joint angle on pharmacologically induced rhythmic activity of CT-joint depressor (DprTr) and levator (LevTr) MNs. The burst duration, mean spike rate within bursts, and duty cycle for each MN pool were found to depend on FT position. For LevTr MNs, these parameters progressively increased as the FT-joint was moved from extension to flexion, and the opposite was true for DprTr MNs. The cycle period of CT-MN rhythmicity also depended on FT position. In addition, we sometimes observed that the motor output shifted completely to one MN pool at extreme positions, suggesting that the central rhythm-generating network for the CT-joint became locked in one phase. These results indicate that position signals from the FT-joint modulate rhythmic activity in CT-joint MNs partly by having access to central rhythm generating networks of the CT-joint.

1996 ◽  
Vol 76 (5) ◽  
pp. 3178-3195 ◽  
Author(s):  
R. M. Johnston ◽  
R. B. Levine

1. Larval crawling is a bilaterally symmetrical behavior that involves an anterior moving wave of motor activity in the body wall muscles in conjunction with sequential movements of the abdominal prolegs and thoracic legs. The purpose of this study was to determine whether the larval CNS by itself and without phasic sensory feedback was capable of producing patterned activity associated with crawling. To establish the extent of similarity between the output of the isolated nerve cord and crawling, the motor activity produced in isolated larval nerve cords was compared with the motor activity from freely crawling larvae. 2. When exposed to the muscarinic receptor agonist pilocarpine (1.0 mM), isolated larval nerve cords produced long-lasting rhythmic activity in the motor neurons that supply the thoracic leg, abdominal body wall, and abdominal proleg muscles. The rhythmic activity evoked by pilocarpine was abolished reversibly and completely by bath application of the muscarinic-receptor antagonist atropine (0.01 mM) in conjunction with pilocarpine (1.0 mM), suggesting that the response was mediated by muscarinic-like acetylcholine receptors. 3. Similar to crawling in intact animals, the evoked activity in isolated nerve cords involved bilaterally symmetrical motor activity that progressed from the most posterior abdominal segment to the most anterior thoracic segment. The rhythmic activity in thoracic leg, abdominal proleg, and abdominal body wall motor neurons showed intrasegmental and intersegmental cycle-to-cycle coupling. The average cycle period for rhythmic activity in the isolated nerve cord was approximately 2.5 times slower than the cycle period for crawling in intact larvae, but not more variable. 4. Like crawling in intact animals, in isolated nerve cords, bursting activity in the dorsal body wall motor neurons occurred before activity in ventral/lateral body wall motor neurons within an abdominal segment. The evoked bursting activity recorded from the proleg nerve was superimposed on a high level of tonic activity. 5. In isolated nerve cords, bursts of activity in the thoracic leg levator/extensor motor neurons alternated with bursts of activity in the depressor/flexor motor neurons. The burst duration of the levator/extensor activity was brief and remained relatively steady as cycle period increased. The burst duration of the depressor/ flexor activity occupied the majority of an average cycle and increased as cycle period increased. The phase of both levator/extensor motor nerve activity and depressor/flexor motor nerve activity remained relatively stable over the entire range of cycle periods. The timing and patterning of thoracic leg motor neuron activity in isolated nerve cords quantitatively resembled thoracic leg motor activity in freely crawling larvae. 6. The rhythmic motor activity generated by an isolated larval nerve cord resembled a slower version of normal crawling in intact larvae. Because of the many similarities between activity induced in the isolated nerve cord and the muscle activity and movements of thoracic and abdominal segments during crawling, we concluded that central mechanisms can establish the timing and patterning of the crawling motor pattern and that crawling may reflect the output of a central pattern generating network.


1995 ◽  
Vol 198 (2) ◽  
pp. 435-456 ◽  
Author(s):  
A Büschges ◽  
J Schmitz ◽  
U Bässler

Bath application of the muscarinic agonist pilocarpine onto the deafferented stick insect thoracic nerve cord induced long-lasting rhythmic activity in leg motoneurones. Rhythmicity was induced at concentrations as low as 1x10(-4) mol l-1 pilocarpine. The most stable rhythms were reliably elicited at concentrations from 2x10(-3) mol l-1 to 5x10(-3) mol l-1. Rhythmicity could be completely abolished by application of atropine. The rhythm in antagonistic motoneurone pools of the three proximal leg joints, the subcoxal, the coxo-trochanteral (CT) and the femoro-tibial (FT), was strictly alternating. In the subcoxal motoneurones, the rhythm was characterised by the retractor burst duration being correlated with cycle period, whereas the protractor burst duration was almost independent of it. The cycle periods of the rhythms in the subcoxal and CT motoneurone pools were in a similar range for a given preparation. In contrast, the rhythm exhibited by motoneurones supplying the FT joint often had about half the duration. The pilocarpine-induced rhythm was generated independently in each hemiganglion. There was no strict intersegmental coupling, although the protractor motoneurone pools of the three thoracic ganglia tended to be active in phase. There was no stereotyped cycle-to-cycle coupling in the activities of the motoneurone pools of the subcoxal joint, the CT joint and the FT joint in an isolated mesothoracic ganglion. However, three distinct 'spontaneous, recurrent patterns' (SRPs) of motoneuronal activity were reliably generated. Within each pattern, there was strong coupling of the activity of the motoneurone pools. The SRPs resembled the motor output during step-phase transitions in walking: for example, the most often generated SRP (SRP1) was exclusively exhibited coincident with a burst of the fast depressor trochanteris motoneurone. During this burst, there was a switch from subcoxal protractor to retractor activity after a constant latency. The activity of the FT joint extensor motoneurones was strongly decreased during SRP1. SRP1 thus qualitatively resembled the motoneuronal activity during the transition from swing to stance of the middle legs in forward walking. Hence, we refer to SRPs as 'fictive step-phase transitions'. In intact, restrained animals, application of pilocarpine also induced alternating activity in antagonistic motoneurone pools supplying the proximal leg joints. However, there were marked differences from the deafferented preparation. For example, SRP1 was not generated in the latter situation. However, if the ipsilateral main leg nerve was cut, SRP1s reliably occurred. Our results on the rhythmicity in leg motoneurone pools of deafferented preparations demonstrate central coupling in the activity of the leg motoneurones that might be incorporated into the generation of locomotion in vivo.


1987 ◽  
Vol 133 (1) ◽  
pp. 137-156 ◽  
Author(s):  
G. WEILAND ◽  
U. T. KOCH

In the stick insect Carausius momsus, the role of the chordotonal organ was investigated using a new experimental arrangement which artificially closes the femur-tibia control system. The chordotonal organ was stimulated during voluntary movements by applying trapezoidal ramp stimuli in the closed-loop configuration. The results demonstrate that the feedback loop is used to control the end points of joint movement. In addition, it was found that the control system counteracts experimentally applied velocity changes imposed during the middle part of the movements. Acceleration-sensitive units are shown to contribute to the reaction. The results show that during active voluntary movements reflexes measured in the inactive animal are neither simply incorporated in a servo-system nor suppressed. Instead their characteristics are altered so that the voluntary movements are executed as intended by the animal. Thus reflexes cannot be considered as a fixed behavioural unit; rather their changing role must be analysed in the context of the behaviour studied.


2001 ◽  
Vol 85 (2) ◽  
pp. 594-604 ◽  
Author(s):  
Turgay Akay ◽  
Ulrich Bässler ◽  
Petra Gerharz ◽  
Ansgar Büschges

Interjoint coordination in multi-jointed limbs is essential for the generation of functional locomotor patterns. Here we have focused on the role that sensory signals from the coxa-trochanteral (CT) joint play in patterning motoneuronal activity of the femur-tibia (FT) joint in the stick insect middle leg. This question is of interest because when the locomotor system is active, movement signals from the FT joint are known to contribute to patterning of activity of the central rhythm-generating networks governing the CT joint. We investigated the influence of femoral levation and depression on the activity of tibial motoneurons. When the locomotor system was active, levation of the femur often induced a decrease or inactivation of tibial extensor activity while flexor motoneurons were activated. Depression of the femur had no systematic influence on tibial motoneurons. Ablation experiments revealed that this interjoint influence was not mediated by signals from movement and/or position sensitive receptors at the CT joint, i.e., trochanteral hairplate, rhombal hairplate, or internal levator receptor organ. Instead the influence was initiated by sensory signals from a field of campaniform sensillae, situated on the proximal femur (fCS). Selective stimulation of these fCS produced barrages of inhibitory postsynaptic potentials (IPSPs) in tibial extensor motoneurons and activated tibial flexor motoneurons. During pharmacologically activated rhythmic activity of the otherwise isolated mesothoracic ganglion (pilocarpine, 5 × 10− 4 M), deafferented except for the CT joint, levation of the femur as well had an inhibitory influence on tibial extensor motoneurons. However, the influence of femoral levation on the rhythm generated was rather labile and only sometimes a reset of the rhythm was induced. In none of the preparations could entrainment of rhythmicity by femoral movement be achieved, suggesting that sensory signals from the CT joint only weakly affect central rhythm-generating networks of the FT joint. Finally, we analyzed the role of sensory signals from the fCS during walking by recording motoneuronal activity in the single middle leg preparation with fCS intact and after their removal. These experiments showed that fCS activity plays an important role in generating tibial motoneuron activity during the stance phase of walking.


1984 ◽  
Vol 56 (6) ◽  
pp. 1583-1588 ◽  
Author(s):  
A. Oliven ◽  
E. C. Deal ◽  
S. G. Kelsen ◽  
N. S. Cherniack

The ability to maintain alveolar ventilation is compromised by respiratory muscle weakness. To examine the independent role of reflexly mediated neural mechanisms to decreases in the strength of contraction of respiratory muscles, we studied the effects of partial paralysis on the level and pattern of phrenic motor activity in 22 anesthetized spontaneously breathing dogs. Graded weakness induced with succinylcholine decreased tidal volume and prolonged both inspiratory and expiratory time causing hypoventilation and hypercapnia. Phrenic peak activity as well as the rate of rise of the integrated phrenic neurogram increased. However, when studied under isocapnic conditions, increases in the severity of paralysis, as assessed from the ratio of peak diaphragm electromyogram to peak phrenic activity, produced progressive increases in inspiratory time and phrenic peak activity but did not affect its rate of rise. After vagotomy, partial paralysis induced in 11 dogs with succinylcholine also prolonged the inspiratory burst of phrenic activity, indicating that vagal reflexes were not solely responsible for the alterations in respiratory timing. Muscle paresis was also induced with gallamine or dantrolene, causing similar responses of phrenic activity and respiratory timing. Thus, at constant levels of arterial CO2 in anesthetized dogs, respiratory muscle partial paralysis results in a decrease in breathing rate without changing the rate of rise of respiratory motor activity. This is not dependent solely on vagally mediated reflexes and occurs regardless of the pharmacological agent used. These observations in the anesthetized state are qualitatively different from the response to respiratory muscle paralysis or weakness observed in awake subjects.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 108 (3) ◽  
pp. 709-711 ◽  
Author(s):  
Yann Thibaudier ◽  
Marie-France Hurteau

Propriospinal pathways are thought to be critical for quadrupedal coordination by coupling cervical and lumbar central pattern generators (CPGs). However, the mechanisms involved in relaying information between girdles remain largely unexplored. Using an in vitro spinal cord preparation in neonatal rats, Juvin and colleagues ( Juvin et al. 2012 ) have recently shown sensory inputs from the hindlimbs have greater influence on forelimb CPGs than forelimb sensory inputs on hindlimb CPGs, in other words, a bottom-up control system. However, results from decerebrate cats suggest a top-down control system. It may be that both bottom-up and top-down control systems exist and that the dominance of one over the other is task or context dependent. As such, the role of sensory inputs in controlling quadrupedal coordination before and after injury requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document