scholarly journals Network disruption following mild traumatic brain injury: clinical and experimental research implications

2018 ◽  
Vol 119 (5) ◽  
pp. 1592-1594
Author(s):  
Casey Swick ◽  
Tiffany Andersen ◽  
Ana-Mercedes Flores

Illuminating the pathophysiological mechanisms that underlie persistent postconcussive symptoms following mild traumatic brain injury (mTBI) is a growing area of study. Alhourani et al. ( J Neurophysiol 116: 1840–1847, 2016) added to this emerging body of literature with their study examining default mode network disruption in mTBI using magnetoencephalography. The findings provided enhanced insight into the neural underpinnings of mTBI, which can be applied to future clinical and experimental research in this area.

Radiology ◽  
2012 ◽  
Vol 265 (3) ◽  
pp. 882-892 ◽  
Author(s):  
Yongxia Zhou ◽  
Michael P. Milham ◽  
Yvonne W. Lui ◽  
Laura Miles ◽  
Joseph Reaume ◽  
...  

2015 ◽  
Vol 5 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Dominic E. Nathan ◽  
Terrence R. Oakes ◽  
Ping Hong Yeh ◽  
Louis M. French ◽  
Jamie F. Harper ◽  
...  

2013 ◽  
Vol 1537 ◽  
pp. 201-215 ◽  
Author(s):  
Chandler Sours ◽  
Jiachen Zhuo ◽  
Jacqueline Janowich ◽  
Bizhan Aarabi ◽  
Kathirkamanthan Shanmuganathan ◽  
...  

2018 ◽  
Vol 24 (7) ◽  
pp. 662-672 ◽  
Author(s):  
Danielle R. Sullivan ◽  
Jasmeet P. Hayes ◽  
Ginette Lafleche ◽  
David H. Salat ◽  
Mieke Verfaellie

AbstractObjectives: Research on the cognitive sequelae of mild traumatic brain injury (mTBI) suggests that, despite generally rapid recovery, difficulties may persist in the domain of cognitive control. The goal of this study was to examine whether individuals with chronic blast-related mTBI show behavioral or neural alterations associated with cognitive control. Methods: We collected event-related functional magnetic resonance imaging (fMRI) data during a flanker task in 17 individuals with blast-related mTBI and 16 individuals with blast-exposure without TBI (control). Results: Groups did not significantly differ in behavioral measures of cognitive control. Relative to the control group, the mTBI group showed greater deactivation of regions associated with the default mode network during the processing of errors. Additionally, error processing in the mTBI group was associated with enhanced negative coupling between the default mode network and the dorsal anterior cingulate cortex as well as the dorsolateral prefrontal cortex, regions of the salience and central executive networks that are associated with cognitive control. Conclusions: These results suggest that deactivation of default mode network regions and associated enhancements of connectivity with cognitive control regions may act as a compensatory mechanism for successful cognitive control task performance in mTBI. (JINS, 2018, 24, 1–11)


2019 ◽  
Vol 13 ◽  
pp. 117906951983396 ◽  
Author(s):  
Michael N Dretsch ◽  
D Rangaprakash ◽  
Jeffrey S Katz ◽  
Thomas A Daniel ◽  
Adam M Goodman ◽  
...  

Background: There is a significant number of military personnel with a history of mild traumatic brain injury (mTBI) who suffer from comorbid posttraumatic stress symptoms (PTS). Although there is evidence of disruptions of the default mode network (DMN) associated with PTS and mTBI, previous studies have only studied static connectivity while ignoring temporal variability of connectivity. Objective: To assess DMN disrupted or dysregulated neurocircuitry, cognitive functioning, and psychological health of active-duty military with mTBI and PTS. Method: U.S. Army soldiers with PTS (n = 14), mTBI + PTS (n = 25), and healthy controls (n = 21) voluntarily completed a cognitive and symptom battery. In addition, participants had magnetic resonance imaging (MRI) to assess both static functional connectivity (SFC) and variance of dynamic functional connectivity (vDFC) of the DMN. Results: Both the PTS and mTBI + PTS groups had significant symptoms, but only the comorbid group had significant decrements in cognitive functioning. Both groups showed less stable and disrupted neural signatures of the DMN, mainly constituting the cingulate-frontal-temporal-parietal attention network. Specifically, the PTS group showed a combination of both reduced contralateral strength and reduced unilateral variability of frontal- cingulate- temporal connectivities, as well as increased variability of frontal- parietal connectivities. The mTBI + PTS group had fewer abnormal connectives than the PTS group, all of which included reduced strength of frontal- temporal regions and reduced variability frontal- cingulate- temporal regions. Greater SFC and vDFC connectivity of the left dorsolateral prefrontal cortex (dlPFC) ↔ precuneus was associated with higher cognitive scores and lower symptom scores. Conclusions: Findings suggest that individuals with PTS and mTBI + PTS have a propensity for accentuated generation of thoughts, feelings, sensations, and/or images while in a resting state. Compared with controls, only the PTS group was associated with accentuated variability of the frontal- parietal attention network. While there were no significant differences in DMN connectivity strength between the mTBI + PTS and PTS groups, variability of connectivity was able to distinguish them.


2018 ◽  
Vol 90 (3) ◽  
pp. 326-332 ◽  
Author(s):  
Xuan Niu ◽  
Lijun Bai ◽  
Yingxiang Sun ◽  
Shan Wang ◽  
Jieli Cao ◽  
...  

ObjectivePost-traumatic headache (PTH) is one of the most frequent and persistent physical symptoms following mild traumatic brain injury (mTBI) and develop in more than 50% of this population. This study aimed to investigate the periaqueductal grey (PAG)-seeded functional connectivity (FC) in patients with mTBI with acute post-traumatic headache (APTH) and further examine whether the FC can be used as a neural biomarker to identify patients developing chronic pain 3 months postinjury.Methods70 patients with mTBI underwent neuropsychological measurements and MRI scans within 7 days postinjury and 56 (80%) of patients were followed up at 3 months. 46 healthy controls completed the same protocol on recruitment to the study. PAG-seeded resting-state FC analysis was measured in 54 patients with mTBI with APTH, in comparison with 46 healthy volunteers.ResultsThe mTBI+APTH group presented significantly reduced PAG-seeded FC within the default mode network (DMN), compared with healthy volunteers group. The connectivity strength can also predict patients’ complaints on the impact of headache on their lives. Crucially, the initial FC strength between the PAG-right precuneus as well as the PAG-right inferior parietal lobule became the important predictor to identify patients with mTBI developing persistent PTH 3 months postinjury.ConclusionsPatients with mTBI+APTH exhibited significant PAG-related FC differences mainly within the DMN. These regions extended beyond traditional pain processing areas and may reflect the diminished top-down attention regulation of pain perception through antinociceptive descending modulation network. The disrupted PAG-DMN FC may be used as an early imaging biomarker to identify patients at risk of developing persistent PTH.


Sign in / Sign up

Export Citation Format

Share Document