Gastric Ulcers Evoke Hyperexcitability and Enhance P2X Receptor Function in Rat Gastric Sensory Neurons

2005 ◽  
Vol 93 (6) ◽  
pp. 3112-3119 ◽  
Author(s):  
K. Dang ◽  
K. Bielfeldt ◽  
K. Lamb ◽  
G. F. Gebhart

Tissue inflammation contributes to the development of hyperalgesia, which is at least in part due to altered properties of primary afferent neurons. We hypothesized that gastric ulcers enhance the excitability of gastric sensory neurons and increase their response to purinergic agonists. The rat stomach was surgically exposed, and a retrograde tracer [1.1′-dioctadecyl-3,3,3,′3-tetramethylindocarbocyanine methanesulfonate (DiI)] was injected into the wall of the distal stomach. Kissing ulcers (KUs) were produced by a single injection of acetic acid (0.1 ml for 45 s; 60%) into the clamped gastric lumen. Saline injection served as control. Gastric nodose ganglion (NG) or dorsal root ganglion (DRG) cells were harvested 7 days later and acutely dissociated for whole cell recordings. Based on whole cell capacitance, gastric DRG neurons exhibited larger cell size than NG neurons. Significantly more control gastric DRG neurons compared with NG counterparts had TTX-resistant action potentials. Almost all control NG neurons (90%) compared with significantly less DRG neurons (≤38%) responded to ATP or α,β-metATP. Whereas none of the control cells exhibited spontaneous activity, about 20% of the neurons from KU animals generated spontaneous action potentials. KUs enhanced excitability as shown by a decrease in threshold for action potential generation, which was in part due to an increased input resistance. This was associated with an increase in the fraction of neurons with TTX-resistant action potentials and cells responding to capsaicin and purinergic agonists. KU doubled the current density evoked by the P2X receptor agonist α,β-metATP and slowed decay of the slowly desensitizing component of the current without affecting the concentration dependence of the response. These data show that KU sensitizes vagal and spinal gastric afferents by affecting both voltage- and ligand-gated channels, thereby potentially contributing to the development of dyspeptic symptoms.

2001 ◽  
Vol 86 (2) ◽  
pp. 629-640 ◽  
Author(s):  
Muthukrishnan Renganathan ◽  
Theodore R. Cummins ◽  
Stephen G. Waxman

C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these neurons has not been established. In this study, we used current-clamp recordings to compare action potential electrogenesis in Nav1.8 (+/+) and (−/−) small DRG neurons maintained for 2–8 h in vitro to examine the role of sodium channel Nav1.8 (α-SNS) in action potential electrogenesis. Although there was no significant difference in resting membrane potential, input resistance, current threshold, or voltage threshold in Nav1.8 (+/+) and (−/−) DRG neurons, there were significant differences in action potential electrogenesis. Most Nav1.8 (+/+) neurons generate all-or-none action potentials, whereas most of Nav1.8 (−/−) neurons produce smaller graded responses. The peak of the response was significantly reduced in Nav1.8 (−/−) neurons [31.5 ± 2.2 (SE) mV] compared with Nav1.8 (+/+) neurons (55.0 ± 4.3 mV). The maximum rise slope was 84.7 ± 11.2 mV/ms in Nav1.8 (+/+) neurons, significantly faster than in Nav1.8 (−/−) neurons where it was 47.2 ± 1.3 mV/ms. Calculations based on the action potential overshoot in Nav1.8 (+/+) and (−/−) neurons, following blockade of Ca2+ currents, indicate that Nav1.8 contributes a substantial fraction (80–90%) of the inward membrane current that flows during the rising phase of the action potential. We found that fast TTX-sensitive Na+ channels can produce all-or-none action potentials in some Nav1.8 (−/−) neurons but, presumably as a result of steady-state inactivation of these channels, electrogenesis in Nav1.8 (−/−) neurons is more sensitive to membrane depolarization than in Nav1.8 (+/+) neurons, and, in the absence of Nav1.8, is attenuated with even modest depolarization. These observations indicate that Nav1.8 contributes substantially to action potential electrogenesis in C-type DRG neurons.


2012 ◽  
Vol 302 (5) ◽  
pp. C757-C765 ◽  
Author(s):  
Keiji Asada ◽  
Koji Obata ◽  
Kazuhide Horiguchi ◽  
Miyako Takaki

Bone homeostasis is regulated by mechanical stimulation (MS). The sensory mechanism of bone tissue for MS remains unknown in the maintenance of bone homeostasis. We aimed to investigate the sensory mechanism from osteoblasts to sensory neurons in a coculture system by MS of osteoblasts. Primary sensory neurons isolated from dorsal root ganglia (DRG) of neonatal, juvenile, and adult mice and osteoblasts isolated from calvaria of neonatal mice were cocultured for 24 h. The responses in DRG neurons elicited by MS of osteoblasts with a glass micropipette were detected by increases in intracellular Ca2+ concentration ([Ca2+]i) with fluo 3-AM. In all developmental stages mice, [Ca2+]i-increasing responses in osteoblasts were promptly elicited by MS. After a short delay, [Ca2+]i-increasing responses were observed in neurites of DRG neurons. The osteoblastic response to second MS was largely attenuated by a stretch-activated Ca2+ channel blocker, gadolinium. The increases of [Ca2+]i in DRG neurons were abolished by a P2 receptor antagonist; suramin, a P2X receptor antagonist, pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate; and an ATP-hydrolyzing enzyme, apyrase. Satellite cells were found around DRG neurons in cocultured cells of only neonatal and juvenile mice. After satellite cells were removed, excessive abnormal responses to MS of osteoblasts were observed in neonatal neurites with unchanged osteoblast responses. The present study indicated that MS of bone tissue elicited afferent P2X receptor-mediated purinergic transmission to sensory neurons in all stages mice. This transmission is modulated by satellite cells, which may have protective actions on sensory neurons.


1991 ◽  
Vol 65 (3) ◽  
pp. 747-758 ◽  
Author(s):  
F. Pongracz ◽  
S. Firestein ◽  
G. M. Shepherd

1. Experimental studies employing whole cell patch recordings from freshly isolated olfactory sensory neurons of the salamander (Ambystoma tigrinum) yield much higher estimates of specific membrane resistance (Rm) than studies using conventional intracellular recordings from in situ neurons. Because Rm is critical for understanding information transfer in these cells, we have used computational methods to analyze the possible reasons for this difference. 2. Compartmental models were constructed for both the in situ and isolated neurons, using SABER, a general-purpose simulation program. For Rm in the in situ cell, we used a high value of 100,000 omega.cm2, as estimated in the whole cell recordings from isolated cells. A shunt across the cell membrane caused by the penetrating microelectrode was simulated by several types of shunt mechanisms, and its effects on lowering the apparent value of resting membrane potential (MP), input resistance (RN), and membrane time constant (tau m) and increasing the electrotonic length (L) were analyzed. 3. A good approximation of the electrotonic properties recorded intracellularly was obtained in the in situ model with high Rm combined with an electrode shunt consisting of Na and K conductances. A raised K conductance (1-5 nS) helps to maintain the resting MP while contributing to the increased conductance, which lowers RN and shortens the apparent tau m toward the experimental values. 4. Combined shunt resistances of 0.1-0.2 G omega (5-10 nS) gave the best fits with the experimental data. These shunts were two to three orders of magnitude smaller than the values reported from intracellular penetrations in muscle cells and motoneurons. This may be correlated with the smaller electrode tips used in the recordings from these small neurons. We thus confirm the prediction that even small values of electrode shunt have relatively large effects on the recorded electrotonic properties of small neurons, because of their high RN (2-5 G omega). 5. We have further explored the effects on electrotonic structure of a nonuniform Rm by giving higher Rm values to the distally located cilia compared with the proximal soma-dendritic region, as indicated by recent experiments. For the same RN, large increases in ciliary Rm above 100,000 omega.cm2 can be balanced by relatively small decreases below that value in soma-dendritic Rm. A high ciliary Rm appears to be a specialization for transduction of the sensory input, as reported also in photoreceptors and hair cells.


1995 ◽  
Vol 74 (2) ◽  
pp. 673-683 ◽  
Author(s):  
A. A. Oyelese ◽  
D. L. Eng ◽  
G. B. Richerson ◽  
J. D. Kocsis

1. The effects of axotomy on the electrophysiologic properties of adult rat dorsal root ganglion (DRG) neurons were studied to understand the changes in excitability induced by traumatic nerve injury. Nerve injury was induced in vivo by sciatic nerve ligation with distal nerve transection. Two to four weeks after nerve ligation, a time when a neuroma forms, lumbar (L4 and L5) DRG neurons were removed and placed in short-term tissue culture. Whole cell patch-clamp recordings were made 5–24 h after plating. 2. DRG neurons were grouped into large (43–65 microns)-, medium (34–42 microns)-, and small (20–32 microns)- sized classes. Large neurons had short duration action potentials with approximately 60% having inflections on the falling phase of their action potentials. In contrast, action potentials of medium and small neurons were longer in duration and approximately 68% had inflections. 3. Pressure microejection of gamma-aminobutyric acid (GABA, 100 microM) or muscimol (100 microM) onto voltage-clamped DRG neurons elicited a rapidly desensitizing inward current that was blocked by 200 microM bicuculline. To measure the peak conductance induced by GABA or muscimol, neurons were voltage-clamped at a holding potential of -60 mV, and pulses to -80 mV and -100 mV were applied at a rate of 2.5 or 5 Hz during drug application. Slope conductances were calculated from plots of whole cell current measured at each of these potentials. 4. GABA-induced currents and conductances of control DRG neurons increased progressively with cell diameter. The mean GABA conductance was 36 +/- 10 nS (mean +/- SE) in small neurons, 124 +/- 21 nS in medium neurons, and 527 +/- 65 nS in large neurons. 5. After axotomy, medium neurons had significantly larger GABA-induced conductances compared with medium control neurons (390 +/- 50 vs. 124 +/- 21; P < 0.001). The increase in GABA conductance of medium neurons was associated with a decrease in duration of action potentials. In contrast, small neurons had no change in GABA conductance or action potential duration after ligation. The GABA conductance of large control neurons was highly variable, and ligation resulted in an increase that was significant only for neurons > 50 microns. The mean action potential duration in large neurons was not significantly changed, but neurons with inflections on the falling phase of the action potential were less common after ligation. There was no difference in resting potential or input resistance between control and ligated groups, except that the resting potential was less negative in small cells after axotomy.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 73 (5) ◽  
pp. 1793-1798 ◽  
Author(s):  
M. D. Womack ◽  
E. W. McCleskey

1. Using patch-clamp methods, we show that brief prepulses to very positive voltages increase (facilitate) the amplitude of current through Ca2+ channels during a subsequent test pulse in some, but not all, dorsal root ganglion (DRG) sensory neurons. The amplitude of this facilitated current generally increases when the Ca2+ channels are inhibited by activation of the mu-opioid receptor. 2. The facilitated current is blocked by omega-conotoxin GVIA, activates in the range of high-threshold Ca2+ channels, and inactivates at relatively negative holding voltages. Thus facilitated current passes through N-type Ca2+ channels, the same channels that are inhibited by opioids and control neurotransmitter release in sensory neurons. 3. Although maximal facilitation occurs only at unphysiologically high membrane potentials (above +100 mV), some facilitation is seen after prepulses to voltages reached during action potentials. After return to the holding potential, facilitation persists for hundreds of milliseconds, considerably longer than in other neurons. Brief trains of pulses designed to mimic action potentials caused small facilitation (19% of maximal) in a fraction (8 of 24) of opioid-inhibited neurons. 4. We conclude that 1) prepulses to extremely positive voltages can cause partial recovery of Ca2+ channels inhibited by opioids; and 2) small, but detectable, facilitation is also seen after physiological stimulation in some DRG neurons. Facilitation, largely considered a biophysical epiphenomenon because of the extreme voltages used to induce it, appears to be physiologically relevant during opioid inhibition of Ca2+ channels in DRG neurons.


1983 ◽  
Vol 50 (6) ◽  
pp. 1543-1559 ◽  
Author(s):  
E. T. Walters ◽  
J. H. Byrne ◽  
T. J. Carew ◽  
E. R. Kandel

The tail-withdrawal reflex of Aplysia can be sensitized by weak stimulation of a site outside the site used to test the reflex or by repeatedly stimulating the test site itself. The sensitization of tail-withdrawal responses is associated with enhanced activation of the tail motor neurons and heterosynaptic facilitation of the monosynaptic connections between the tail sensory neurons and tail motor neurons. This synaptic facilitation can occur under conditions in which neither posttetanic potentiation nor generalized changes in postsynaptic input resistance contribute to the facilitation. In addition to producing monosynaptic excitatory postsynaptic potentials (EPSPs), action potentials in tail sensory neurons often recruit longer latency polysynaptic input to the tail motor neurons during sensitization. Strong, noxious tail shock similar in intensity to that used previously for sensitization and aversive classical conditioning of other responses in Aplysia produces more heterosynaptic facilitation than does weak sensitizing stimulation. Heterosynaptic facilitation builds up progressively with multiple trials and lasts for hours. Very strong shocks to the tail can change the response characteristics of tail sensory neurons so that a prolonged, regenerative burst of spikes is elicited by a brief intracellular depolarizing pulse. This bursting response produced by sensitizing stimulation has not been described previously in Aplysia sensory neurons and can greatly amplify the synaptic input to tail motor neurons from the sensory neurons. In addition, strong shocks to the tail increase the duration and magnitude of individual sensory neuron action potentials. Sensitizing tail stimulation usually produces long-lasting depolarization of the tail motor neurons and often long-lasting hyperpolarization of the tail sensory neurons. The tail motor and sensory neurons show both increases and decreases of input resistance following sensitizing stimulation. However, the small, occasional increases in input resistance of the motor neuron are insufficient to explain the heterosynaptic facilitation produced by sensitizing stimulation. Serotonin (5-HT) application can mimic many of the effects of sensitizing tail shock, including facilitation of both tail withdrawal and the monosynaptic connections between tail sensory and motor neurons, hyperpolarizing and depolarizing responses in the tail sensory neurons, and an increase in the duration and magnitude of the sensory neuron action potential. In the nearly isolated sensory neuron soma, 5-HT usually produces a slow, decreased conductance depolarizing response, suggesting that the 5-HT-induced hyperpolarizing response see


2005 ◽  
Vol 93 (6) ◽  
pp. 3401-3409 ◽  
Author(s):  
Amaresh Vydyanathan ◽  
Zi-Zhen Wu ◽  
Shao-Rui Chen ◽  
Hui-Lin Pan

Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between isolectin B4 (IB4)-positive and -negative DRG neurons. Whole cell voltage- and current-clamp recordings were performed on acutely dissociated small DRG neurons of rats. The total Kv current density was significantly higher in IB4-positive than that in IB4-negative neurons. Also, 4-aminopyridine (4-AP) produced a significantly greater reduction in Kv currents in IB4-positive than in IB4-negative neurons. In contrast, IB4-negative neurons exhibited a larger proportion of tetraethylammonium-sensitive Kv currents. Furthermore, IB4-positive neurons showed a longer latency of firing and required a significantly larger amount of current injection to evoke action potentials. 4-AP significantly decreased the latency of firing and increased the firing frequency in IB4-positive but not in IB4-negative neurons. Additionally, IB4-positive neurons are immunoreactive to Kv1.4 but not to Kv1.1 and Kv1.2 subunits. Collectively, this study provides new information that 4-AP–sensitive A-type Kv currents are mainly present in IB4-positive DRG neurons and preferentially dampen the initiation of action potentials of this subpopulation of nociceptors. The difference in the density of A-type Kv currents contributes to the distinct electrophysiological properties of IB4-positive and -negative DRG neurons.


2002 ◽  
Vol 87 (6) ◽  
pp. 2835-2843 ◽  
Author(s):  
Jinghui Xie ◽  
Margaret P. Price ◽  
Allan L. Berger ◽  
Michael J. Welsh

For many years it has been observed that extracellular acid activates transient cation currents in large-diameter mechanosensory dorsal root ganglion (DRG) neurons. However, the molecular basis of these currents has not been known. Large DRG neurons express the dorsal root acid sensing ion channel (DRASIC), suggesting that DRASIC might contribute to H+-gated DRG currents. To test this, we examined whole cell currents in large DRG neurons from mice in which the DRASIC gene had been disrupted. We found that DRASIC null neurons retained H+-gated currents, indicating that DRASIC alone was not required for the currents. However, without DRASIC, the properties of the currents changed substantially as compared with wild-type neurons. In DRASIC –/– neurons, the rate of current desensitization in the continued presence of an acid stimulus slowed dramatically. H+-gated currents in DRASIC null neurons showed a decreased sensitivity to pH and an enhanced sensitivity to amiloride. The loss of DRASIC also altered but did not abolish the current potentiation generated by FMRF-related peptides. These data indicate that the DRASIC subunit makes an important contribution to H+-gated currents in large DRG sensory neurons. The results also suggest that related acid-activated DEG/ENaC channel subunits contribute with DRASIC to form heteromultimeric acid-activated channels.


2014 ◽  
pp. 793-799 ◽  
Author(s):  
Y.-Q. YU ◽  
X.-F. CHEN ◽  
Y. YANG ◽  
F. YANG ◽  
J. CHEN

In the mammalian autonomic nervous system, tonic and phasic neurons can be differentiated on firing patterns in response to long depolarizing current pulse. However, the similar firing patterns in the somatic primary sensory neurons and their functional significance are not well investigated. Here, we identified two types of neurons innervating somatic sensory in rat dorsal root ganglia (DRG). Tonic neurons fire action potentials (APs) in an intensity-dependent manner, whereas phasic neurons typically generate only one AP firing at the onset of stimulation regardless of intensity. Combining retrograde labeling of somatic DRG neurons with fluorescent tracer DiI, we further find that these neurons demonstrate distinct changes under inflammatory pain states induced by complete Freund’s adjuvant (CFA) or bee venom toxin melittin. In tonic neurons, CFA and melittin treatments significantly decrease rheobase and AP durations (depolarization and repolarization), enhance amplitudes of overshoot and afterhyperpolarization (AHP), and increase the number of evoked action potentials. In phasic neurons, however, the same inflammation treatments cause fewer changes in these electrophysiological parameters except for the increased overshoot and decreased AP durations. In the present study, we find that tonic neurons are more hyperexcitable than phasic neurons after peripheral noxious inflammatory stimulation. The results indicate the distinct contributions of two types of DRG neurons in inflammatory pain.


1985 ◽  
Vol 54 (2) ◽  
pp. 245-260 ◽  
Author(s):  
C. E. Stansfeld ◽  
D. I. Wallis

The active and passive membrane properties of rabbit nodose ganglion cells and their responsiveness to depolarizing agents have been examined in vitro. Neurons with an axonal conduction velocity of less than 3 m/s were classified as C-cells and the remainder as A-cells. Mean axonal conduction velocities of A- and C-cells were 16.4 m/s and 0.99 m/s, respectively. A-cells had action potentials of brief duration (1.16 ms), high rate of rise (385 V/s), an overshoot of 23 mV, and relatively high spike following frequency (SFF). C-cells typically had action potentials with a "humped" configuration (duration 2.51 ms), lower rate of rise (255 V/s), an overshoot of 28.6 mV, an after potential of longer duration than A-cells, and relatively low SFF. Eight of 15 A-cells whose axons conducted at less than 10 m/s had action potentials of longer duration with a humped configuration; these were termed Ah-cells. They formed about 10% of cells whose axons conducted above 2.5 m/s. The soma action potential of A-cells was blocked by tetrodotoxin (TTX), but that of 6/11 C-cells was unaffected by TTX. Typically, A-cells showed strong delayed (outward) rectification on passage of depolarizing current through the soma membrane and time-dependent (inward) rectification on inward current passage. Input resistance was thus highly sensitive to membrane potential close to rest. In C-cells, delayed rectification was not marked, and slight time-dependent rectification occurred in only 3 of 25 cells; I/V curves were normally linear over the range: resting potential to 40 mV more negative. Data on Ah-cells were incomplete, but in our sample of eight cells time-dependent rectification was absent or mild. C-cells had a higher input resistance and a higher neuronal capacitance than A-cells. In a proportion of A-cells, RN was low at resting potential (5 M omega) but increased as the membrane was hyperpolarized by a few millivolts. A-cells were depolarized by GABA but were normally unaffected by 5-HT or DMPP. C-cells were depolarized by GABA in a similar manner to A-cells but also responded strongly to 5-HT; 53/66 gave a depolarizing response, and 3/66, a hyperpolarizing response. Of C-cells, 75% gave a depolarizing response to DMPP.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document