BEHAVIORAL EVIDENCE FOR COLOR DISCRIMINATION IN CAT

1964 ◽  
Vol 27 (3) ◽  
pp. 323-333 ◽  
Author(s):  
Nancy K. Mello ◽  
Neil J. Peterson
2021 ◽  
Vol 224 (18) ◽  
Author(s):  
Susan D. Finkbeiner ◽  
Adriana D. Briscoe

ABSTRACT In true color vision, animals discriminate between light wavelengths, regardless of intensity, using at least two photoreceptors with different spectral sensitivity peaks. Heliconius butterflies have duplicate UV opsin genes, which encode ultraviolet and violet photoreceptors, respectively. In Heliconius erato, only females express the ultraviolet photoreceptor, suggesting females (but not males) can discriminate between UV wavelengths. We tested the ability of H. erato, and two species lacking the violet receptor, Heliconius melpomene and Eueides isabella, to discriminate between 380 and 390 nm, and between 400 and 436 nm, after being trained to associate each stimulus with a sugar reward. We found that only H. erato females have color vision in the UV range. Across species, both sexes show color vision in the blue range. Models of H. erato color vision suggest that females have an advantage over males in discriminating the inner UV-yellow corollas of Psiguria flowers from their outer orange petals. Moreover, previous models ( McCulloch et al., 2017) suggested that H. erato males have an advantage over females in discriminating Heliconius 3-hydroxykynurenine (3-OHK) yellow wing coloration from non-3-OHK yellow wing coloration found in other heliconiines. These results provide some of the first behavioral evidence for female H. erato UV color discrimination in the context of foraging, lending support to the hypothesis ( Briscoe et al., 2010) that the duplicated UV opsin genes function together in UV color vision. Taken together, the sexually dimorphic visual system of H. erato appears to have been shaped by both sexual selection and sex-specific natural selection.


2020 ◽  
Author(s):  
Susan D. Finkbeiner ◽  
Adriana D. Briscoe

ABSTRACTTrue color vision in animals is achieved when wavelength discrimination occurs based on chromatic content of the stimuli, regardless of intensity. In order to successfully discriminate between multiple wavelengths, animals must use at least two photoreceptor types with different spectral sensitivity peaks.Heliconius butterflies have duplicate UV opsin genes, which encode two kinds of photoreceptors with peak sensitivities in the ultraviolet and violet, respectively. In H. erato, the ultraviolet photoreceptor is only expressed in females.Evidence from intracellular recordings suggests female H. erato may be able to discriminate between UV wavelengths, however, this has yet to be tested experimentally.Using an arena with a controlled light setting, we tested the ability of H. erato, and two species lacking the violet receptor, H. melpomene and outgroup Eueides isabella, to discriminate between two ultraviolet wavelengths, 380 and 390 nm, as well as two blue wavelengths, 400 and 436 nm, after being trained to associate each stimulus with a food reward. Wavelength stimuli were presented in varying intensities to rule out brightness as a cue.We found that H. erato females were the only butterflies capable of color vision in the UV range; the other butterflies had an intensity-dependent preference for UV stimuli. Across species, both sexes showed color vision in the blue-range.Models of H. erato color vision suggest that females have an advantage over males in discriminating the inner UV-yellow corolla of Psiguria pollen flowers from the surrounding outer orange petals, while previous models (McCulloch et al. 2017) suggested that H. erato males have an advantage over females in discriminating Heliconius 3-hyroxykynurenine (3-OHK) yellow wing coloration from non-3-OHK yellow wing coloration found in mimics.These results provide some of the first behavioral evidence for UV color discrimination in Heliconius females in the context of foraging, lending support to the hypothesis (Briscoe et al. 2010) that the duplicated UV opsin genes function together in UV color vision. Taken together, the sexually dimorphic visual system of H. erato appears to have been shaped by both sexual selection and sex-specific natural selection.


2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


2017 ◽  
Author(s):  
Lewis Forder ◽  
Gary Lupyan

As part of learning some languages, people learn to name colors using categorical labels such as “red”, “yellow”, and “green”. Such labeling clearly facilitates communicating about colors, but does it also impact color perception? We demonstrate that simply hearing color words enhances categorical color perception, improving people’s accuracy in discriminating between simultaneously presented colors in an untimed task. Immediately after hearing a color word participants were better able to distinguish between colors from the named category and colors from nearby categories. Discrimination was also enhanced between typical and atypical category members. Verbal cues slightly decreased discrimination accuracy between two typical shades of the named color. In contrast to verbal cues, a preview of the target color, an arguably more informative cue, failed to yield any changes to discrimination accuracy. The finding that color words strongly affect color discrimination accuracy suggests that categorical color perception may be due to color representations being augmented in-the-moment by language.


Sign in / Sign up

Export Citation Format

Share Document