Organization of primary somatosensory cortex in the cat

1980 ◽  
Vol 43 (6) ◽  
pp. 1527-1546 ◽  
Author(s):  
R. W. Dykes ◽  
D. D. Rasmusson ◽  
P. B. Hoeltzell

1. Multi-unit recordings were made from SI cortex of barbiturte-anesthetized cats. In four cats, multiple vertical penetrations were made at closely spaced intervals. In 12 cats, long surface-parallel penetrations were made in the rostrocaudal or the lateromedial directions with observations taken every 100 micron. 2. Evidence is presented suggesting that cytoarchitectonic area 3a receives input from deep receptors and area 3b receives input from cutaneous receptors. 3. Within area 3b there was an abrupt change in submodality such that the rostral portion of 3b was activated by slowly adapting (SA) afferents, while the caudal portion was activated by rapidly adapting (RA) afferents. 4. The change in modality from deep to cutaneous occurred at the 3a/3b border, but the change in submodality occurred within area 3b and there was no obvious anatomical correlate of the latter transition. 5. These data suggest that there are modality- and submodality-specific bands in register with the bands of cytoarchitecture that extend across the mediolateral dimension of primary somatosensory cortex (SI). 6. A particular receptor population (or populations) from all regions of the body delivers information to each functionally specific band--one map is found in area 3a and two are in area 3b. If this pattern holds for the rest of cat SI, then there must be additional maps of the body in cytoarchitectonic areas 1 and 2.

1998 ◽  
Vol 79 (4) ◽  
pp. 2119-2148 ◽  
Author(s):  
Christian Xerri ◽  
Michael M. Merzenich ◽  
Bret E. Peterson ◽  
William Jenkins

Xerri, Christian, Michael M. Merzenich, Bret E. Peterson, and William Jenkins. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J. Neurophysiol. 79: 2119–2148, 1998. Adult owl and squirrel monkeys were trained to master a small-object retrieval sensorimotor skill. Behavioral observations along with positive changes in the cortical area 3b representations of specific skin surfaces implicated specific glabrous finger inputs as important contributors to skill acquisition. The area 3b zones over which behaviorally important surfaces were represented were destroyed by microlesions, which resulted in a degradation of movements that had been developed in the earlier skill acquisition. Monkeys were then retrained at the same behavioral task. They could initially perform it reasonably well using the stereotyped movements that they had learned in prelesion training, although they acted as if key finger surfaces were insensate. However, monkeys soon initiated alternative strategies for small object retrieval that resulted in a performance drop. Over several- to many-week-long period, monkeys again used the fingers for object retrieval that had been used successfully before the lesion, and reacquired the sensorimotor skill. Detailed maps of the representations of the hands in SI somatosensory cortical fields 3b, 3a, and 1 were derived after postlesion functional recovery. Control maps were derived in the same hemispheres before lesions, and in opposite hemispheres. Among other findings, these studies revealed the following 1) there was a postlesion reemergence of the representation of the fingertips engaged in the behavior in novel locations in area 3b in two of five monkeys and a less substantial change in the representation of the hand in the intact parts of area 3b in three of five monkeys. 2) There was a striking emergence of a new representation of the cutaneous fingertips in area 3a in four of five monkeys, predominantly within zones that had formerly been excited only by proprioceptive inputs. This new cutaneous fingertip representation disproportionately represented behaviorally crucial fingertips. 3) There was an approximately two times enlargement of the representation of the fingers recorded in cortical area 1 in postlesion monkeys. The specific finger surfaces employed in small-object retrieval were differentially enlarged in representation. 4) Multiple-digit receptive fields were recorded at a majority of emergent, cutaneous area 3a sites in all monkeys and at a substantial number of area 1 sites in three of five postlesion monkeys. Such fields were uncommon in area 1 in control maps. 5) Single receptive fields and the component fields of multiple-digit fields in postlesion representations were within normal receptive field size ranges. 6) No significant changes were recorded in the SI hand representations in the opposite (untrained, intact) control hemisphere. These findings are consistent with “substitution” and “vicariation” (adaptive plasticity) models of recovery from brain damage and stroke.


1992 ◽  
Vol 68 (2) ◽  
pp. 518-527 ◽  
Author(s):  
T. P. Pons ◽  
P. E. Garraghty ◽  
M. Mishkin

1. Selective ablations of the hand representations in postcentral cortical areas 3a, 3b, 1, and 2 were made in different combinations to determine each area's contribution to the responsivity and modality properties of neurons in the hand representation in SII. 2. Ablations that left intact only the postcentral areas that process predominantly cutaneous inputs (i.e., areas 3b and 1) yielded SII recording sites responsive to cutaneous stimulation and none driven exclusively by high-intensity or "deep" stimulation. Conversely, ablations that left intact only the postcentral areas that process predominantly deep receptor inputs (i.e., areas 3a and 2) yielded mostly SII recording sites that responded exclusively to deep stimulation. 3. Ablations that left intact only area 3a or only area 2 yielded substantial and roughly equal reductions in the number of deep receptive fields in SII. By contrast, ablations that left intact only area 3b or only area 1 yielded unequal reductions in the number of cutaneous receptive fields in SII: a small reduction when area 3b alone was intact but a somewhat larger one when only area 1 was intact. 4. Finally, when the hand representation in area 3b was ablated, leaving areas 3a, 1, and 2 fully intact, there was again a substantial reduction in the encounter rate of cutaneous receptive fields. 5. The partial ablations often led to unresponsive sites in the SII hand representation. In SII representations other than of the hand no such unresponsive sites were found and there were no substantial changes in the ratio of cutaneous to deep receptive fields, indicating that the foregoing results were not due to long-lasting postsurgical depression or effects of anesthesia. 6. The findings indicate that modality-specific information is relayed from postcentral cortical areas to SII along parallel channels, with cutaneous inputs transmitted via areas 3b and 1, and deep inputs via areas 3a and 2. Further, area 3b provides the major source of cutaneous input to SII, directly and perhaps also via area 1. 7. The results are in line with accumulating anatomic and electrophysiologic evidence pointing to an evolutionary shift in the organization of the somatosensory system from the general mammalian plan, in which tactile information is processed in parallel in SI and SII, to a new organization in higher primates in which the processing of tactile information proceeds serially from SI to SII. The presumed functional advantages of this evolutionary shift are unknown.


Science ◽  
1979 ◽  
Vol 204 (4392) ◽  
pp. 521-523 ◽  
Author(s):  
J. Kaas ◽  
R. Nelson ◽  
M Sur ◽  
C. Lin ◽  
M. Merzenich

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0128462 ◽  
Author(s):  
Yevhen Hlushchuk ◽  
Cristina Simões-Franklin ◽  
Cathy Nangini ◽  
Riitta Hari

2021 ◽  
Vol 14 ◽  
Author(s):  
W. R. Willoughby ◽  
Kristina Thoenes ◽  
Mark Bolding

Functional magnetic resonance imaging (fMRI) was used to estimate neuronal activity in the primary somatosensory cortex of six participants undergoing cutaneous tactile stimulation on skin areas spread across the entire body. Differences between the accepted somatotopic maps derived from Penfield's work and those generated by this fMRI study were sought, including representational transpositions or replications across the cortex. MR-safe pneumatic devices mimicking the action of a Wartenberg wheel supplied touch stimuli in eight areas. Seven were on the left side of the body: foot, lower, and upper leg, trunk beneath ribcage, anterior forearm, middle fingertip, and neck above the collarbone. The eighth area was the glabella. Activation magnitude was estimated as the maximum cross-correlation coefficient at a certain phase shift between ideal time series and measured blood oxygen level dependent (BOLD) time courses on the cortical surface. Maximally correlated clusters associated with each cutaneous area were calculated, and cortical magnification factors were estimated. Activity correlated to lower limb stimulation was observed in the paracentral lobule and superomedial postcentral region. Correlations to upper extremity stimulation were observed in the postcentral area adjacent to the motor hand knob. Activity correlated to trunk, face and neck stimulation was localized in the superomedial one-third of the postcentral region, which differed from Penfield's cortical homunculus.


1996 ◽  
Vol 76 (5) ◽  
pp. 3382-3403 ◽  
Author(s):  
F. Tremblay ◽  
S. A. Ageranioti-Belanger ◽  
C. E. Chapman

1. The discharge patterns of 359 single neurons in the hand representation of primary somatosensory cortex (SI) of two monkeys (Macaca mulatta) were recorded during the performance of a passive texture discrimination task with the contralateral hand (104 in area 3b, 149 in area 1, and 106 in area 2). Three nyloprint surfaces were mounted on a drum that was rotated under the digit tips. One surface was entirely smooth, whereas the other two were smooth over the first half and rough over the second half (smooth/ rough) (raised dots, 1 mm high and 1 mm diam, in a rectangular array; spatial period of 3 mm across the rows and columns for most recordings; 9 mm between columns for selected recordings). The monkeys were trained to distinguish between the smooth and smooth/rough surfaces. After the surface presentation, the monkey indicated the texture of the second half of the surface by pushing or pulling, respectively, on a lever with the other arm. For most recordings an average tangential speed of 49 mm/s was tested. For selected recordings motor speed was incremented (63, 75, or 89 mm/s). 2. Two hundred eighty-three neurons had a cutaneous receptive field (RF) on the hand (96 in area 3b, 120 in area 1, and 67 in area 2). Thirty-five neurons had a deep RF (4 in area 3b, 15 in area 1, and 16 in area 2). Seven neurons had mixed cutaneous and deep RFs (4 in area 1, 3 in area 2). Thirty-four neurons had no identifiable RF (4 in area 3b, 10 in area 1, and 20 in area 2). 3. The discharge of 185 of 359 neurons was significantly modulated during the presentation of one or both surfaces compared with the discharge at rest. Cells with a cutaneous RF that included part or all of the distal phalangeal pads of the digits used in the task (usually digits III and IV) were more likely to be modulated during surface presentation (132 of 179, 74%) than those with a cutaneous RF not in contact with the surfaces (24 of 104, 23%). The remaining neurons (mixed, deep, or no RF) were also infrequently modulated (29 of 76, 38%). 4. Of the 185 modulated units, 118 cells were classified as texture related because there was a significant difference in the discharge rate evoked by the smooth/rough and smooth surfaces. Cells with a cutaneous RF that included the digital pads in contact with the surfaces were frequently texture related (100 of 132, 76%). Texture sensitivity was less frequently observed in the remaining modulated neurons (18 of 53, 34%: cutaneous RF not in contact with the surfaces, deep RF, mixed cutaneous and deep RF, no identifiable RF). 5. Texture-related neurons were found in areas 3b, 1, and 2. Two patterns of texture-related responses were observed in the 100 cutaneous units with an RF in contact with the surfaces. Thirty-one units were classified as showing a phasic response at the time the digits encountered the leading edge of the rough half of the surface. Fifty-eight cells were classified as phasic-tonic (or sometimes tonic at the slowest motor speeds) because the response lasted for the duration of the presentation of the rough portion of the surface. The remaining 11 neurons could not be readily classified into one or the other category and, indeed, generally showed clear texture-related responses only at higher motor speeds (> 49 mm/s, 9 of 11). 6. Speed sensitivity was systematically evaluated in 41 of 100 texture-related units with a cutaneous RF in contact with the surfaces. The discharge of 66% of the units (27 of 41) varied significantly with the speed of surface presentation, with discharge increasing at higher speeds. Speed sensitivity was found in all three cytoarchitectonic areas (6 of 6 cells in area 3b, 11 of 22 in area 1, and 10 of 13 in area 2). 7. Contact force was also systematically monitored in these experiments (69 of 100 texture-related cells with a cutaneous RF in contact with the surfaces). Linear regression analyses indicated than 22% (15 of 69) of the texture-related units were sensitive to contact force (13


2013 ◽  
Vol 110 (7) ◽  
pp. 1554-1566 ◽  
Author(s):  
Alexandra Dépeault ◽  
El-Mehdi Meftah ◽  
C. Elaine Chapman

Moving stimuli activate all of the mechanoreceptive afferents involved in discriminative touch, but their signals covary with several parameters, including texture. Despite this, the brain extracts precise information about tactile speed, and humans can scale the tangential speed of moving surfaces as long as they have some surface texture. Speed estimates, however, vary with texture: lower estimates for rougher surfaces (increased spatial period, SP). We hypothesized that the discharge of cortical neurons playing a role in scaling tactile speed should covary with speed and SP in the same manner. Single-cell recordings ( n = 119) were made in the hand region of primary somatosensory cortex (S1) of awake monkeys while raised-dot surfaces (longitudinal SPs, 2–8 mm; periodic or nonperiodic) were displaced under their fingertips at speeds of 40–105 mm/s. Speed sensitivity was widely distributed (area 3b, 13/25; area 1, 32/51; area 2, 31/43) and almost invariably combined with texture sensitivity (82% of cells). A subset of cells (27/64 fully tested speed-sensitive cells) showed a graded increase in discharge with increasing speed for testing with both sets of surfaces (periodic, nonperiodic), consistent with a role in tactile speed scaling. These cells were almost entirely confined to caudal S1 (areas 1 and 2). None of the speed-sensitive cells, however, showed a pattern of decreased discharge with increased SP, as found for subjective speed estimates in humans. Thus further processing of tactile motion signals, presumably in higher-order areas, is required to explain human tactile speed scaling.


Sign in / Sign up

Export Citation Format

Share Document