Pharmacologic sensitivity of amino acid responses and synaptic activation of in vitro prepyriform neurons

1982 ◽  
Vol 48 (6) ◽  
pp. 1289-1301 ◽  
Author(s):  
N. Hori ◽  
C. R. Auker ◽  
D. J. Braitman ◽  
D. O. Carpenter

1. In an effort to identify the neurotransmitter released from terminals of the lateral olfactory tract (LOT) we have studied excitatory amino acid agonist and antagonist actions on population and single-unit responses in submerged and perfused slices of rat prepyriform cortex. Previous studies suggest that the transmitter at this synapse is either aspartate (Asp) or glutamate (Glu). 2. The field potential reflecting the monosynaptic activation of pyramidal neurons after stimulation of the LOT was reversibly depressed by bath perfusion of agonists, with an order of potency being kainic acid (KA) greater than N-methyl-DL-aspartate (NMDA) greater than homocysteic acid (HC) greater than Asp = Glu. 3. The synaptic field potential was essentially unaffected by DL-alpha-aminoadipic acid (AA), 2-amino-3-phosphonopropionic acid (APP), and DL-alpha-diaminopimelic acid (DAPA), all presumed to be selective for Asp receptors, and by L-glutamic acid diethyl ester (GDEE), presumed to be specific for Glu receptors. The field potential was depressed or abolished by 2-amino-4-phosphonobutyric acid (APB), an agent known to block Glu responses in insect muscle. 4. The effects of ionophoretic application of agonists were studied on single neurons recorded extracellularly. While there was some variability among neurons in relative agonist potency, all neurons were excited by the five agonists with relative potencies in general similar to those observed for the field potentials. 5. Responses to Glu and Asp were unaffected by AA, GDEE, and APB at concentrations up to 5 X 10(-3) M. Responses to KA, NMDA, and HC were often depressed by APB but were unaffected by the other antagonists. The excitation on stimulation of the LOT was consistently, rapidly, and reversibly blocked by APB. 6. These observations are not consistent with either Glu or Asp being the neurotransmitter of the LOT.

1991 ◽  
Vol 66 (1) ◽  
pp. 293-306 ◽  
Author(s):  
L. J. Larson-Prior ◽  
P. S. Ulinski ◽  
N. T. Slater

1. A preparation of turtle (Chrysemys picta and Pseudemys scripta) brain in which the integrity of the intracortical and geniculocortical pathways in visual cortex are maintained in vitro has been used to differentiate the excitatory amino acid (EAA) receptor subtypes involved in geniculocortical and intracortical synapses. 2. Stimulation of the geniculocortical fibers at subcortical loci produces monosynaptic excitatory postsynaptic potentials (EPSPs) in visual cortical neurons. These EPSPs are blocked by the broad-spectrum EAA receptor antagonist kynurenate (1-2 mM) and the non-N-methyl-D-aspartate (NMDA) antagonist 6, 7-dinitroquinoxaline-2,3-dione (DNQX, 10 microM), but not by the NMDA antagonist D,L-2-amino-5-phosphonovalerate (D,L-AP-5, 100 microM). These results indicate that the geniculocortical EPSP is mediated by EAAs that access principally, if not exclusively, EAA receptors of the non-NMDA subtypes. 3. Stimulation of intracortical fibers evokes compound EPSPs that could be resolved into three components differing in latency to peak. The component with the shortest latency was not affected by any of the EAA-receptor antagonists tested. The second component, of intermediate latency, was blocked by kyurenate and DNQX but not by D,L-AP-5. The component of longest latency was blocked by kynurenate and D,L-AP-5, but not by DNQX. These results indicate that the compound intracortical EPSP is comprised of three pharmacologically distinct components that are mediated by an unknown receptor, by quisqualate/kainate, and by NMDA receptors, respectively. 4. Repetitive stimulation of intracortical pathways at 0.33 Hz produces a dramatic potentiation of the late, D,L-AP-5-sensitive component of the intracortical EPSP. 5. These experiments lead to a hypothesis about the subtypes of EAA receptors that are accessed by the geniculocortical and intracortical pathways within visual cortex.


2002 ◽  
Vol 88 (3) ◽  
pp. 1159-1165 ◽  
Author(s):  
Gerardo Biella ◽  
Laura Uva ◽  
Ulrich G. Hofmann ◽  
Marco De Curtis

Associative fiber systems in the entorhinal cortex (EC) have been extensively studied in different mammals with tracing techniques. The largest contingent of intra-EC cortico-cortical fibers runs in the superficial layers and is distributed predominantly within longitudinal cortical bands. We studied the patterns of intrinsic EC connectivity in the in vitro isolated guinea pig brain preparation by performing current-source density analysis of field potential laminar profiles recorded with multi-channel silicon probes. The response pattern evoked by stimulation of the lateral olfactory tract was utilized to identify the lateral (l-EC) and medial (m-EC) entorhinal cortex. Stimulation of the deep layers did not evoke consistent responses. Local stimulation of the superficial layers in different portions of the EC induced an early, possibly direct response restricted to layer II–III in the close proximity to the stimulating electrode, followed by a late potential in the superficial layer I, that propagated at distance with a progressively increasing latency. The monosynaptic nature of the delayed response was verified by applying a pairing test. The results demonstrated that stimulation in the rostral-medial part of the EC generated activity restricted to the rostral pole of the l-EC, stimulation of the m-EC induced an associative activation that propagated rostrocaudally within the m-EC, stimulation of the caudal pole of the m-EC induced an additional response directed laterally, and stimulation of the lateral band of the EC determined a prominent longitudinal propagation of neuronal activity, but also induced associative potentials that propagated medially. The results are in partial agreement with the general picture derived from the anatomical studies performed in different species. Even though the largest associative interactions between superficial layers are restricted within either the m-EC or the l-EC, both rostral and caudal stimuli in the EC region close to the rhinal sulcus induced activity that propagated across the border between l- and m-EC.


1986 ◽  
Vol 55 (6) ◽  
pp. 1283-1294 ◽  
Author(s):  
J. M. ffrench-Mullen ◽  
N. Hori ◽  
D. O. Carpenter

The actions of a variety of agonists and antagonists of the excitatory amino acids on rat pyriform cortex pyramidal neurons were studied in a submerged, perfused brain slice. The order of potency for the agonists, applied by ionophoresis, was kainate greater than quisqualate greater than N-methyl-D-aspartate greater than aspartate = glutamate. The endogenous monosynaptic excitation of pyramidal neurons upon stimulation of the lateral olfactory tract was blocked post-synaptically by DL-2-amino-4-phosphonobutyric acid, although this drug did not consistently block any of the exogenous responses. The synaptic excitation was not blocked, however, by antagonists presumed specific for the quisqualate (glutamate diethyl ester), kainate, (gamma-D-glutamylglycine), or N-methyl-D-aspartate (DL-2-amino-5-phosphonovaleric acid, DL-2-amino-7-phosphonohetaonic acid) receptors. Several antagonists blocked N-methyl-D-aspartate responses at lower concentrations than those to aspartate, and other antagonists distinguished between kainate and quisqualate responses. These results suggest that 1) pyriform neurons have a variety of receptors that have properties somewhat different from those found in other preparations and 2) the endogenous transmitter activates a receptor distinct from those activated by kainate, quisqualate, and N-methyl-D-aspartate.


1993 ◽  
Vol 264 (1) ◽  
pp. R41-R50 ◽  
Author(s):  
A. Vardhan ◽  
A. Kachroo ◽  
H. N. Sapru

Stimulation of carotid body chemoreceptors by saline saturated with 100% CO2 elicited an increase in mean arterial pressure, respiratory rate, tidal volume, and minute ventilation (VE). Microinjections of L-glutamate into a midline area 0.5-0.75 mm caudal and 0.3-0.5 mm deep with respect to the calamus scriptorius increased VE. Histological examination showed that the site was located in the commissural nucleus of the nucleus tractus solitarii (NTS). The presence of excitatory amino acid receptors [N-methyl-D-aspartic acid (NMDA); kainate, quisqualate/alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and trans 1-amino-cyclopentane-trans-1,3-dicarboxylic acid (ACPD)] in this area was demonstrated by microinjections of appropriate agonists. Simultaneous blockade of NMDA and non-NMDA receptors by combined injections of DL-2-aminophosphonoheptanoate (AP-7; 1 nmol) and 6,7-dinitro-quinoxaline-2,3-dione (DNQX; 1 nmol) abolished the responses to stimulation of carotid body on either side. Combined injections of AP-7 and DNQX did not produce a nonspecific depression of neurons because the responses to another agonist, carbachol, remained unaltered. Inhibition of the neurons in the aforementioned area with microinjections of muscimol (which hyperpolarizes neuronal cell bodies but not fibers of passage) also abolished the responses to subsequent carotid body stimulation on either side.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (2) ◽  
pp. H770-H773 ◽  
Author(s):  
W. Zhang ◽  
S. W. Mifflin

The nucleus tractus solitarius (NTS) is the primary site of termination of arterial baroreceptor and chemoreceptor afferent fibers. Excitatory amino acid (EAA) receptors within NTS have been shown to play an important role in the mediation of arterial baroreceptor reflexes; however, the importance of EAA receptors within NTS in the mediation of arterial chemoreceptor reflexes remains controversial. Therefore, in chloralose-urethan-anesthetized, mechanically ventilated, paralyzed rats, 4 nmol of the broad-spectrum EAA receptor antagonist kynurenic acid (Kyn) was injected into the NTS to observe the effects of EAA receptor blockade on the pressor responses evoked by either activation of ipsilateral carotid body chemoreceptors (by close arterial injection of CO2-saturated bicarbonate) or electrical stimulation of ipsilateral carotid sinus nerve (CSN). Under control conditions, activation of carotid body chemoreceptors and CSN stimulation evoked increases in arterial pressure of 27 +/- 2 (n = 24 sites) and 28 +/- 3% (n = 8), respectively. Kyn microinjection into NTS significantly reduced the pressor responses evoked by activation of carotid body chemoreceptors and electrical stimulation of the CSN for 20 and 25 min, respectively. Attenuation of pressor responses evoked by chemoreceptor activation were maximal at 20 min post-Kyn injection (13 +/- 2%), whereas CSN-evoked pressor responses were maximally attenuated at 15 min (6 +/- 4%). Microinjection into NTS of 4 nmol of xanthurenic acid, a structural analogue of Kyn with no EAA receptor antagonist properties, had no effect on chemoreceptor reflexes. We conclude that EAA receptors within NTS play an important role in the mediation of arterial chemoreceptor reflexes.


1989 ◽  
Vol 67 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Guy Debonnel ◽  
Luc Beauchesne ◽  
Claude de Montigny

Domoic acid, an excitatory amino acid structurally related to kainate, was recently identified as being presumably responsible for the recent severe intoxication presented by more than 100 people having eaten mussels grown in Prince Edward Island (Canada). The amino acid kainate has been shown to be highly neurotoxic to the hippocampus, which is the most sensitive structure in the central nervous system. The present in vivo electrophysiological studies were undertaken to determine if domoic acid exerts its neurotoxic effect via kainate receptor activation. Unitary extracellular recordings were obtained from pyramidal neurons of the CA1 and the CA3 regions of the rat dorsal hippocampus. The excitatory effect of domoic acid applied by microiontophoresis was compared with that of agonists of the three subtypes of glutamatergic receptors: kainate, quisqualate, and N-methyl-D-aspartate. In CA1, the activation induced by domoic acid was about threefold greater than that induced by kainate; identical concentrations and similar currents were used. In CA3, domoic acid was also three times more potent than kainate. However, the most striking finding was that domoic acid, similar to kainate, was more than 20-fold more potent in the CA3 than in the CA1 region, whereas no such regional difference could be detected with quisqualate and N-methyl-D-aspartate. As the differential regional response of CA1 and CA3 pyramidal neurons to kainate is attributable to the extremely high density of kainate receptors in the CA3 region, these results provide the first electrophysiological evidence that domoic acid may produce its neurotoxic effects through kainate receptor activation.Key words: domoate, kainate, excitotoxin, hippocampus, N-methyl-D-aspartate.


1962 ◽  
Vol 203 (4) ◽  
pp. 687-689 ◽  
Author(s):  
J. C. Penhos ◽  
M. E. Krahl

Slices prepared from livers of bull frogs ( Rana catesbiana), pancreatectomized and/or hypophysectomized 7 days before, were incubated 2 hr in frog Ringer-bicarbonate solution at 25 C. Incorporation of leucine-1-C14 into protein was subnormal in the pancreatectomized series. The addition of insulin in vitro, with glucose also present in the medium, produced a significant ( P < 0.01) stimulation of amino acid incorporation in the following series: livers from normal fed animals; livers from animals pancreatectomized 7 days before; and livers from animals pancreatectomized and hypophysectomized 7 days before. Neither insulin nor glucose alone gave a significant effect. These results therefore confirm and extend those obtained with rat liver slices showing that insulin can stimulate amino acid incorporation into protein when added directly to liver. The effect is relatively greatest with livers from animals pancreatectomized 7 days before; the insulin effect does not depend on the presence of the pituitary, as it is obtainable with livers from animals hypophysectomized and pancreatectomized 7 days previously.


Sign in / Sign up

Export Citation Format

Share Document