scholarly journals Morphology of Inner Retina in Rhesus Monkeys of Various Ages: A Comparative Study

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jingfei Chen ◽  
Qihui Luo ◽  
Chao Huang ◽  
Wen Zeng ◽  
Ping Chen ◽  
...  

Purpose. To investigate the changes of thickness in each layer, the morphology and density of inner neurons in rhesus monkeys’ retina at various growth stages, thus contribute useful data for further biological studies. Methods. The thickness of nerve fiber layer (NFL), the whole retina, inner plexiform layer (IPL), and outer plexiform layer (OPL) of rhesus monkeys at different ages were observed with hematoxylin and eosin (H&E) staining. The morphology and the density of inner neurons of rhesus monkey retina were detected by immunofluorescence. Results. The retina showed the well-known ten layers, the thickness of each retinal layer in rhesus monkeys at various ages increased rapidly after infant, and the retina was the thickest in adulthood, but the retinal thickness stop growing in senescent. Quantitative analysis showed that the maximum density of inner neurons was reached in adolescent, and then, the density of inner neurons decreased in adults and senescent retinas. And some changes in the morphology of rod bipolar cells have occurred in senescent. Conclusions. The structure of retina in rhesus monkeys is relatively immature at infant, and the inner retina of rhesus monkeys is mature in adolescent, while the thickness of each retinal layer was the most developed in the adult group. There was no significant change in senescence for the thickness of each retinal layer, but the number of the neurons in our study has a decreasing trend and the morphological structure has changed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ga-In Lee ◽  
Kyung-Ah Park ◽  
Sei Yeul Oh ◽  
Doo-Sik Kong ◽  
Sang Duk Hong

AbstractWe evaluated postoperative retinal thickness in pediatric and juvenile craniopharyngioma (CP) patients with chiasmal compression using optical coherence tomography (OCT) auto-segmentation. We included 18 eyes of 18 pediatric or juvenile patients with CP and 20 healthy controls. Each thickness of the macular retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor layer was compared between the CP patients and healthy controls. There was significant thinning in the macular RNFL (estimates [μm], superior, − 10.68; inferior, − 7.24; nasal, − 14.22), all quadrants of GCL (superior, − 16.53; inferior, − 14.37; nasal, − 24.34; temporal, − 9.91) and IPL (superior, − 11.45; inferior, − 9.76; nasal, − 15.25; temporal, − 4.97) in pediatric and juvenile CP patients postoperatively compared to healthy control eyes after adjusting for age and refractive errors. Thickness reduction in the average and nasal quadrant of RNFL, GCL, and IPL was associated with peripapillary RNFL thickness, and reduced nasal quadrant GCL and IPL thicknesses were associated with postoperative visual field defects. In pediatric and juvenile patients with CP, decreased inner retinal layer thickness following chiasmal compression was observed. The changes in retinal structures were closely related to peripapillary RNFL thinning and functional outcomes.


2018 ◽  
Vol 5 (3) ◽  
pp. e449 ◽  
Author(s):  
Timm Oberwahrenbrock ◽  
Ghislaine L. Traber ◽  
Sebastian Lukas ◽  
Iñigo Gabilondo ◽  
Rachel Nolan ◽  
...  

ObjectiveTo evaluate the inter-rater reliability of semiautomated segmentation of spectral domain optical coherence tomography (OCT) macular volume scans.MethodsMacular OCT volume scans of left eyes from 17 subjects (8 patients with MS and 9 healthy controls) were automatically segmented by Heidelberg Eye Explorer (v1.9.3.0) beta-software (Spectralis Viewing Module v6.0.0.7), followed by manual correction by 5 experienced operators from 5 different academic centers. The mean thicknesses within a 6-mm area around the fovea were computed for the retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL). Intraclass correlation coefficients (ICCs) were calculated for mean layer thickness values. Spatial distribution of ICC values for the segmented volume scans was investigated using heat maps.ResultsAgreement between raters was good (ICC > 0.84) for all retinal layers, particularly inner retinal layers showed excellent agreement across raters (ICC > 0.96). Spatial distribution of ICC showed highest values in the perimacular area, whereas the ICCs were poorer for the foveola and the more peripheral macular area. The automated segmentation of the OPL and ONL required the most correction and showed the least agreement, whereas differences were less prominent for the remaining layers.ConclusionsAutomated segmentation with manual correction of macular OCT scans is highly reliable when performed by experienced raters and can thus be applied in multicenter settings. Reliability can be improved by restricting analysis to the perimacular area and compound segmentation of GCL and IPL.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Chul Hee Lee ◽  
Min Woo Lee ◽  
Eun Young Choi ◽  
Suk Ho Byeon ◽  
Sung Soo Kim ◽  
...  

Purpose. To compare changes in the retinal layer thickness and visual outcomes in patients undergoing epiretinal membrane (ERM) surgery with or without internal limiting membrane (ILM) peeling. Methods. Seventy-six eyes of 76 patients who underwent ERM surgery from January 2013 to March 2015 at the Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea, were analyzed. While ERM removal with ILM peeling was performed in ILM peeling (P) group (n=39), ILM peeling was not performed in non-ILM peeling (NP) group (n=37). Retinal layer segmentation was performed using optical coherence tomography images. Individual retinal layer thicknesses before and at 6 months after ERM surgery were compared. The postoperative best-corrected visual acuity (BCVA) was also compared. Results. In the P group, the thicknesses of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) were significantly reduced. In the NP group, significant decreases in the RNFL, GCL, IPL, inner nuclear layer, and outer plexiform layer were observed. The P group manifested a greater mean postoperative GCL (35.56 ± 1.53 µm vs 29.86 ± 2.16 µm; p=0.033) and less loss of GCL (−10.26 ± 1.91 µm vs −19.86 ± 2.74 µm; p=0.004) compared to the NP group. No statistically significant differences were observed when comparing the changes in BCVA. Conclusions. This study demonstrates that ILM peeling for ERM surgery may result in better preservation of GCL compared to no ILM peeling.


2021 ◽  
Author(s):  
Makoto Araie ◽  
Makoto Fujii ◽  
Yuko Ohno ◽  
Yuki Tanaka ◽  
Tsutomu Kikawa ◽  
...  

Abstract Aging-associated changes in visual field (VF) sensitivity were compared prospectively and longitudinally with the circumpapillary retinal nerve fiber layer thickness (cpRNFLT) and macular ganglion cell-inner plexiform layer thickness (GCIPLT) changes in the corresponding retinal areas of the same eyes (72 eyes of 37 normal Japanese subjects; mean age, 51.3 years). The Humphrey Field Analyzer 24-2 test (HFA 24-2) and spectral-domain optical coherence tomography (SD-OCT) measurements of the cpRNFLT and GCIPLT in a 0.6-mm-diameter circle corresponding to the four central points of HFA 24-2 adjusted for retinal ganglion cell displacement (GCIPLT4TestPoints) were performed every 3 months for 3 years. The tiem changes of the mean sensitivity over the entire field (VFmean) and the four central points (VF4TestPoints), cpRNFLT, and GCIPLT4TestPoints were analyzed using a linear mixed model. The aging-associated decline rates of VFmean and VF4TestPoins were 0.12 and 0.19 decibels/year (p<0.001), which significantly accelerated with increased subjects’ age (0.009 and 0.010 decibels/year, p<0.001, respectively) without changes in the ocular media. Those of the CpRNFLT and GCIPLT4TestPoints were not significant in both (p>0.114), but significantly accelerated with increased subjects’ age (0.021 and 0.010 mm/year, p=0.001 and 0.004, respectively). These results have implications in studying physiological aging- or desease-related changes in these parameters.


1999 ◽  
Vol 16 (3) ◽  
pp. 483-490 ◽  
Author(s):  
V.P. CONNAUGHTON ◽  
T.N. BEHAR ◽  
W.-L.S. LIU ◽  
S.C. MASSEY

The patterns of glutamate, γ-aminobutyric acid (GABA), and glycine distribution in the zebrafish retina were determined using immunocytochemical localization of antisera at the light-microscope level. The observed GABA immunoreactivity (GABA-IR) patterns were further characterized using antibodies to both isoforms of glutamic acid decarboxylase (GAD65 and GAD67), the synthetic enzyme for GABA. Glutamate-IR was observed in all retinal layers with photoreceptors, bipolar cells, and ganglion cells prominently labeled. Bipolar cells displayed the most intense glutamate-IR and bipolar cell axon terminals were clearly identified as puncta arranged in layers throughout the inner plexiform layer (IPL). These findings suggest the presence of multiple subtypes of presumed OFF- and ON-bipolar cells, including some ON-bipolar cells characterized by a single, large (9 μm × 6 μm) axon terminal. GABA-, GAD-, and glycine-IR were most intense in the inner retina. In general, the observed labeling patterns for GABA, GAD65, and GAD67 were similar. GABA- and GAD-IR were observed in a population of amacrine cells, a few cells in the ganglion cell layer, throughout the IPL, and in horizontal cells. In the IPL, both GABA- and GAD-IR structures were organized into two broad bands. Glycine-IR was observed in amacrine cells, interplexiform cells, and in both plexiform layers. Glycine-positive terminals were identified throughout the IPL, with a prominent band in sublamina 3 corresponding to an immunonegative region observed in sections stained for GAD and GABA. Our results show the distribution of neurons in the zebrafish retina that use glutamate, GABA, or glycine as their neurotransmitter. The observed distribution of neurotransmitters in the inner retina is consistent with previous studies of other vertebrates and suggests that the advantages of zebrafish for developmental studies may be exploited for retinal studies.


1985 ◽  
Vol 53 (3) ◽  
pp. 714-725 ◽  
Author(s):  
S. A. Bloomfield ◽  
J. E. Dowling

Intracellular recordings were obtained from amacrine and ganglion cells in the superfused, isolated retina-eyecup of the rabbit. The putative neurotransmitters aspartate, glutamate, and several of their analogues were added to the superfusate while the membrane potential and light-responsiveness of the retinal neurons were monitored. Both L-aspartate and L-glutamate displayed excitatory actions on the activity of the vast majority of amacrine and ganglion cells studied. However, these agents occasionally appeared to inhibit the responses of the inner retinal neurons by producing hyperpolarization of the membrane potential and blockage of the light-evoked responses. In either case, the effects of aspartate and glutamate were indistinguishable. The glutamate analogues kainate and quisqualate produced strong excitatory effects on the responses of amacrine and ganglion cells at concentrations some 200-fold less than those needed to obtain similar effects with aspartate or glutamate. The aspartate analogue, n-methyl DL-aspartate (NMDLA), also produced strong excitatory effects but was approximately three times less potent than kainate or quisqualate. On one occasion, we encountered a ganglion cell that was depolarized by kainate, but hyperpolarized by NMDLA. The glutamate antagonist alpha-methyl glutamate and the aspartate antagonist alpha-amino adipate effectively blocked the responses of amacrine and ganglion cells. However, on any one cell, one antagonist was always clearly more potent than the other. We examined the actions of the glutamate analogue 2-amino-4-phosphonobutyrate (APB) on the responses of inner retinal neurons and found that it selectively abolished all "on" activity in the inner retina. Together with our finding that APB selectively abolishes on-bipolar cell responses (see Ref. 6), these data support the hypothesis that on-bipolar cells subserve the "on" activity of amacrine and ganglion cells. Our data suggest that aspartate and glutamate are excitatory transmitters in the inner retina, possibly being released from bipolar cell axon terminals in the inner plexiform layer.


2008 ◽  
Vol 25 (2) ◽  
pp. 109-123 ◽  
Author(s):  
BAOQIN LI ◽  
KELLI McKERNAN ◽  
WEN SHEN

AbstractThe Na-K-2Cl cotransporter (NKCC) is a Cl− uptake transporter that is responsible for maintaining a Cl− equilibrium potential positive to the resting potential in neurons. If NKCC is active, GABA and glycine can depolarize neurons. In view of the abundance of GABAergic and glycinergic synapses in retina, we undertook a series of studies using immunocytochemical techniques to determine the distribution of NKCC in retinas of both developing and adult mice. We found NKCC antibody (T4) labeling present in retinas from wild-type mice, but not in NKCC1-deficient mice, suggesting that the NKCC1 subtype is a major Cl− uptake transporter in mouse retina. Strong labeling of NKCC1 was present in horizontal cells and rod-bipolar dendrites in adult mice. Interestingly, we also found that a diffuse labeling pattern was present in photoreceptor terminals. However, NKCC1 was barely detectable in the inner retina of adult mice. Using an antibody against K-Cl cotransporter 2 (KCC2), we found that KCC2, a transporter that extrudes Cl−, was primarily expressed in the inner retina. The expression of NKCC1 in developing mouse retinas was studied from postnatal day (P) 1 to P21, NKCC1 labeling first appeared in the dendrites of horizontal and rod-bipolar cells as early as P7, followed by photoreceptor terminals between P10-P14; with expression gradually increasing concomitantly with the growth of synaptic terminals and dendrites throughout retinal development. In the inner retina, NKCC1 labeling was initially observed in the inner plexiform layer at P1, but labeling diminished after P5. The developmental increase in NKCC expression only occurred in the outer retina. Our results suggest that the distal synapses and synaptogenesis in mouse retinas undergo a unique process with a high intracellular Cl− presence due to NKCC1 expression.


2019 ◽  
Vol 46 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Paulo Lizano ◽  
Deepthi Bannai ◽  
Olivia Lutz ◽  
Leo A Kim ◽  
John Miller ◽  
...  

Abstract Background Schizophrenia (SZ) and bipolar disorder (BD) are characterized by reductions in gray matter and white matter. Limitations in brain imaging have led researchers to use optical coherence tomography (OCT) to explore retinal imaging biomarkers of brain pathology. We examine the retinal layers that may be associated with SZ or BD. Methods Articles identified using PubMed, Web of Science, Cochrane Database. Twelve studies met inclusion for acutely/chronically ill patients. We used fixed or random effects meta-analysis for probands (SZ and BD), SZ or BD eyes vs healthy control (HC) eyes. We adjusted for sources of bias, cross-validated results, and report standardized mean differences (SMD). Statistical analysis performed using meta package in R. Results Data from 820 proband eyes (SZ = 541, BD = 279) and 904 HC eyes were suitable for meta-analysis. The peripapillary retinal nerve fiber layer (RNFL) showed significant thinning in SZ and BD eyes compared to HC eyes (n = 12, SMD = −0.74, −0.51, −1.06, respectively). RNFL thinning was greatest in the nasal, temporal, and superior regions. The combined peripapillary ganglion cell layer and inner plexiform layer (GCL-IPL) showed significant thinning in SZ and BD eyes compared to HC eyes (n = 4, SMD = −0.39, −0.44, −0.28, respectively). No statistically significant differences were identified in other retinal or choroidal regions. Clinical variables were unrelated to the RNFL or GCL-IPL thickness by meta-regression. Conclusion The observed retinal layer thinning is consistent with the classic gray- and white-matter atrophy observed on neuroimaging in SZ and BD patients. OCT may be a useful biomarker tool in studying the neurobiology of psychosis.


2017 ◽  
Vol 24 (2) ◽  
pp. 158-166 ◽  
Author(s):  
Danko Coric ◽  
Lisanne J Balk ◽  
Merike Verrijp ◽  
Anand Eijlers ◽  
Menno M Schoonheim ◽  
...  

Background: Inner retinal layer (IRL) atrophy is a potential biomarker for neurodegeneration in multiple sclerosis (MS). Objective: To investigate the relationship between cognitive impairment and IRL atrophy in MS. Methods: Cross-sectional study design, including 217 patients and 59 healthy controls. Subjects were investigated clinically, underwent retinal optical coherence tomography (OCT) and comprehensive cognitive assessments. The association between these modalities was evaluated by regression analyses. Results: Of the patients, 44.2% were cognitively impaired. In the absence of multiple sclerosis–associated optic neuritis (MSON), cognitively impaired patients had a significantly lower mean peripapillary retinal nerve fiber layer (pRNFL, Δ: 8.13 µm, p < 0.001) and mean macular ganglion cell–inner plexiform layer (mGCIPL, Δ: 11.50 µm, p < 0.001) thickness compared to cognitively preserved patients. There was a significant association between the presence of cognitive impairment and pRNFL (odds ratio (OR): 1.11, 95% confidence interval (CI): 1.04–1.18, p = 0.001) and mGCIPL (OR = 1.11, 95% CI = 1.05–1.18, p < 0.001) atrophy. This association was masked by the severe IRL atrophy seen following MSON. Conclusion: The strong relationship between cognitive impairment across multiple cognitive domains and atrophy of the pRNFL and mGCIPL in patients who never suffered from MSON suggests that OCT is useful in assessing central nervous system neurodegeneration in MS.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Katsutoshi Goto ◽  
Atsushi Miki ◽  
Tsutomu Yamashita ◽  
Syunsuke Araki ◽  
Go Takizawa ◽  
...  

Objective. To evaluate macular inner retinal layers using swept-source optical coherence tomography (SS-OCT) in patients with homonymous hemianopia due to optic tract syndrome (OTS). Methods. Sixteen eyes of 8 patients with OTS were studied. The macular retinal nerve fiber layer (mRNFL), ganglion cell layer and inner plexiform layer (GCL + IPL), and mRNFL and GCL + IPL (GCC) were measured by SS-OCT (DRI OCT-1 Atlantis®).The scanned area was divided into eight regions and two hemiretinae. Each retinal thickness of the OTS group was compared with that of the 25 control subjects. Results. The GCC thickness in the ipsilateral eyes was significantly reduced in all regions, although predominant thinning of the GCC in the contralateral eyes was found in the nasal region. The GCC + IPL thickness was preferentially reduced at the temporal regions in the ipsilateral eyes and at the nasal regions in the contralateral eyes. The reduction rate of the GCL + IPL thickness was 29.6% at the temporal hemiretina in the ipsilateral eyes and 35.2% at the nasal hemiretina in the contralateral eyes. Conclusion. We found preferential loss of the GCC + IPL thickness corresponding to the hemifield defects in each eye. Quantitative analysis by SS-OCT is capable of detecting the characteristic RGC loss due to OTS.


Sign in / Sign up

Export Citation Format

Share Document