Strength-duration and activity-dependent excitability properties of frog afferent axons and their intraspinal projections

1991 ◽  
Vol 65 (3) ◽  
pp. 468-476 ◽  
Author(s):  
N. C. Tkacs ◽  
R. D. Wurster

1. Excitability properties of afferent axons and terminal regions in frog dorsal roots (DR) and spinal cords in vitro were investigated by antidromic activation from three sites--the root, the entry zone (dorsal white matter or DW), and deep within the dorsal horn (DH)--while recordings were made from the DR. 2. Two approaches were used to assess physiological differences between telodendria and trunk axons. Rheobases and strength-duration time constants (tau sd) of single DR fibers were measured by stimulation in the DH or in the DW. Conduction velocity was estimated on the basis of onset latencies of evoked spikes (the time from stimulation to action potential arrival at the recording electrodes). Population supernormality was evaluated on the basis of responses to conditioned and unconditioned submaximal stimuli delivered to the DH or to the proximal end of isolated DRs. 3. Single-fiber action potentials occurred at longer latencies after DH stimulation than after DW stimulation. Estimated intraspinal conduction velocity was congruent to 0.6 m/s. Extraspinal conduction velocity in these fibers averaged 22.2 m/s. Average tau sd was longer in the DH than in the DW (670 microseconds vs. 204 microseconds). 4. DH and DR test responses evoked 10-150 ms after a conditioning stimulus had increased areas relative to unconditioned test responses. Conditioning-associated changes in evoked responses were greater with the DH stimulation site than with the DR stimulation site, and these changes were not altered by treatment designed to block synaptic transmission. 5. We conclude that membrane properties determining tau sd differ between large afferent axons and fine terminal regions of those axons.(ABSTRACT TRUNCATED AT 250 WORDS)

1990 ◽  
Vol 259 (6) ◽  
pp. L403-L409 ◽  
Author(s):  
A. C. Myers ◽  
B. J. Undem ◽  
D. Weinreich

Active and passive membrane membrane properties of parasympathetic neurons were examined in vitro in a newly localized ganglion on the right bronchus of the guinea pig. Neurons could be classified as “tonic” or “phasic” based on their action potential discharge response to suprathreshold depolarizing constant current steps. Tonic neurons (39%) responded with repetitive action potentials sustained throughout the current step, whereas phasic neurons (61%) responded with an initial burst of action potentials at the onset of the step but then accommodated. Tonic and phasic neurons could not be differentiated by other active or passive membrane properties. Electrical stimulation of the vagus nerve elicited one to three temporally distinct fast nicotinic excitatory potentials, and tetanic stimulation of the vagus nerve evoked slow depolarizing (10% of neurons) and hyperpolarizing (25% of neurons) potentials; the latter was mimicked by muscarinic receptor activation. Similar slow and fast postsynaptic potentials were observed in both tonic and phasic neurons. We suggest neurons within the bronchial ganglion possess membrane and synaptic properties capable of integrating presynaptic stimuli.


2000 ◽  
Vol 83 (3) ◽  
pp. 1722-1732 ◽  
Author(s):  
Amy M. Ritter ◽  
C. Jeffery Woodbury ◽  
Kathryn Albers ◽  
Brian M. Davis ◽  
H. Richard Koerber

In the rodent, cutaneous sensory neurons mature over the first two postnatal weeks, both in terms of their electrical properties and their responses to mechanical stimulation of the skin. To examine the coincidence of these events, intracellular recordings were made from neurons in the dorsal root ganglion (DRG) in an in vitro spinal cord, DRG, and skin preparation from mice between the ages of postnatal day 0 and 5 ( P0–P5). We also examined mice in which nerve growth factor (NGF) is overexpressed in the skin. NGF has been shown to be involved in a number of aspects of sensory neuron development and function. Therefore we ask here whether excess target-derived NGF will alter the normal course of development, either of somal membrane properties, physiological response properties, or neuropeptide content. In wild-type mice, somal action potentials (APs) were heterogeneous, with some having simple, uninflected falling phases and some displaying an inflection or break on the falling limb. The proportion of neurons lacking an inflection increased with increasing age, as did mean conduction velocity. A variety of rapidly and slowly adapting responses could be obtained by gently probing the skin; however, due to relatively low thresholds and firing frequencies, as well as lack of mature peripheral receptors such as hairs, it was not possible to place afferents into the same categories as in the adult. No correlation was seen between the presence or absence of an inflection on the somal AP (a marker for high-threshold mechanoreceptors in adult animals) and either peripheral threshold or calcitonin-gene related peptide (CGRP) content. Small differences in the duration and amplitude of the somal AP were seen in the NGF-overexpressing mice that disappeared by P3–P5. Excess target-derived NGF did not alter physiological response properties or the types of neurons containing CGRP. The changes that did occur, including a loss of the normal relationship between AP duration and conduction velocity, and a decrease in mean conduction velocity in the inflected population, might best be explained by an increase in the relative proportions of myelinated nociceptors. Of greatest interest was the finding that in both NGF overexpressers and wild-type mice, the correlation between mechanical threshold and presence or absence of an inflection on the somal spike is not apparent by P5.


1990 ◽  
Vol 259 (3) ◽  
pp. C389-C396 ◽  
Author(s):  
B. C. Jubelin ◽  
M. S. Kannan

The in vitro membrane properties of neurons from superior cervical ganglia (SCG) of neonatal spontaneously hypertensive (SH), Wistar-Kyoto (WKY), and Sprague-Dawley (SD) rats were studied with microelectrodes. Neurons were obtained by enzymatic dissociation, plated, irradiated, and studied after 2-5 wk. Most SH neurons showed multiple action potentials in response to an intracellular long-duration depolarizing pulse (multiple firing), whereas most neurons from WKY or SD rats generated only one or two action potentials. Multiple firing was inhibited by low concentrations of cobalt (10(-5) M) but not by tetrodotoxin (TTX) (3 x 10(-6) M). Neither high calcium (5-10 x 10(-3) M) nor the Ca2+(-)channel opener BAY K 8644 (10(-6) M) could induce multiple firing in SD or WKY neurons. However, multiple firing was readily induced by apamin (10(-6) M) or tetraethylammonium chloride (5 x 10(-3) M) (Ca2+(-)activated K+(-)channels blockers), with cobalt and TTX sensitivities similar to native multiple-firing neurons. We conclude that 1) multiple firing is characteristic of neonate SH rats SCG neurons in vitro and depends on regenerative Ca2+ currents; 2) multiple firing in SH neurons results from a lack of activation of a Ca2+(-)activated K+ conductance and not from a lack of internal Ca2+ availability; and 3) multiple firing in SCG neurons mirrors a default in K+ conductance common to all cells in genetically hypertensive individuals.


2006 ◽  
Vol 96 (6) ◽  
pp. 2963-2971 ◽  
Author(s):  
Philip M. Lang ◽  
Gila Moalem-Taylor ◽  
David J. Tracey ◽  
Hugh Bostock ◽  
Peter Grafe

Activity-dependent fluctuations in axonal excitability and changes in interspike intervals modify the conduction of trains of action potentials in unmyelinated peripheral nerve fibers. During inflammation of a nerve trunk, long stretches of axons are exposed to inflammatory mediators such as 5-hydroxytryptamine [5-HT]. In the present study, we have tested the effects of m-chlorophenylbiguanide (mCPBG), an agonist at the 5-HT(3) serotonin receptor, on activity- and potential-dependent variations in membrane threshold and conduction velocity of unmyelinated C-fiber axons of isolated rat sural nerve segments. The increase in axonal excitability during application of mCPBG was much stronger at higher frequencies of action potentials and/or during axonal membrane hyperpolarization. The effects on the postspike recovery cycle also depended on the rate of stimulation. At an action potential frequency of 1 Hz or in hyperpolarized axons, mCPBG produced a loss of superexcitability. In contrast, at 0.33 Hz, a small increase in the postspike subexcitability was observed. Similar effects on excitability changes were found when latency instead of threshold was recorded, but only at higher action potential frequencies: at 1.8 Hz, mCPBG increased conduction velocity and reduced postspike supernormality. The latter effect would increase the interspike interval if pairs of action potentials were conducted along several cm in an inflamed nerve trunk. These data indicate that activation of axonal 5-HT(3) receptors not only enhances membrane excitability but also modulates action potential trains in unmyelinated, including nociceptive, nerve fibers at high impulse rates.


2001 ◽  
Vol 86 (3) ◽  
pp. 1252-1265 ◽  
Author(s):  
Yu-Feng Wang ◽  
Xiao-Bing Gao ◽  
Anthony N. van den Pol

Spikes may play an important role in modulating a number of aspects of brain development. In early hypothalamic development, GABA can either evoke action potentials, or it can shunt other excitatory activity. In both slices and cultures of the mouse hypothalamus, we observed a heterogeneity of spike patterns and frequency in response to GABA. To examine the mechanisms underlying patterns and frequency of GABA-evoked spikes, we used conventional whole cell and gramicidin perforation recordings of neurons ( n = 282) in slices and cultures of developing mouse hypothalamus. Recorded with gramicidin pipettes, GABA application evoked action potentials in hypothalamic neurons in brain slices of postnatal day 2–9( P2- 9) mice. With conventional patch pipettes (containing 29 mM Cl−), action potentials were also elicited by GABA from neurons of 2–13 days in vitro (2–13 DIV) embryonic hypothalamic cultures. Depolarizing responses to GABA could be generally classified into three types: depolarization with no spike, a single spike, or complex patterns of multiple spikes. In parallel experiments in slices, electrical stimulation of GABAergic mediobasal hypothalamic neurons in the presence of glutamate receptor antagonists [10 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 100 μM 2-amino-5-phosphonopentanoic acid (AP5)] resulted in the occurrence of spikes that were blocked by bicuculline (20 μM). Blocking ionotropic glutamate receptors with AP5 and CNQX did not block GABA-mediated multiple spikes. Similarly, when synaptic transmission was blocked with Cd2+ (200 μM) and Ni2+(300 μM), GABA still induced multiple spikes, suggesting that the multiple spikes can be an intrinsic membrane property of GABA excitation and were not based on local interneurons. When the pipette [Cl−] was 29 or 45 mM, GABA evoked multiple spikes. In contrast, spikes were not detected with 2 or 10 mM intracellular [Cl−]. With gramicidin pipettes, we found that the mean reversal potential of GABA-evoked current ( E GABA) was positive to the resting membrane potential, suggesting a high intracellular [Cl−] in developing mouse neurons. Varying the holding potential from −80 to 0 mV revealed an inverted U-shaped effect on spike probability. Blocking voltage-dependent Na+ channels with tetrodotoxin eliminated GABA-evoked spikes, but not the GABA-evoked depolarization. Removing Ca2+ from the extracellular solution did not block spikes, indicating GABA-evoked Na+-based spikes. Although E GABA was more positive within 2–5 days in culture, the probability of GABA-evoked spikes was greater in 6- to 9-day cells. Mechanistically, this appears to be due to a greater Na+ current found in the older cells during a period when the E GABA is still positive to the resting membrane potential. GABA evoked similar spike patterns in HEPES and bicarbonate buffers, suggesting that Cl−, not bicarbonate, was primarily responsible for generatingmultiple spikes. GABA evoked either single or multiple spikes; neurons with multiple spikes had a greater Na+ current, a lower conductance, a more negative spike threshold, and a greater difference between the peak of depolarization and the spike threshold. Taken together, the present results indicate that the patterns of multiple action potentials evoked by GABA are an inherent property of the developing hypothalamic neuron.


2000 ◽  
Vol 84 (3) ◽  
pp. 1404-1413 ◽  
Author(s):  
Tomoshige Koga ◽  
Robert M. Bradley

The properties of afferent sensory neurons supplying taste receptors on the tongue were examined in vitro. Neurons in the geniculate (GG) and petrosal ganglia (PG) supplying the tongue were fluorescently labeled, acutely dissociated, and then analyzed using patch-clamp recording. Measurement of the dissociated neurons revealed that PG neurons were significantly larger than GG neurons. The active and passive membrane properties of these ganglion neurons were examined and compared with each other. There were significant differences between the properties of neurons in the PG and GG ganglia. The mean membrane time constant, spike threshold, action potential half-width, and action potential decay time of GG neurons was significantly less than those of PG neurons. Neurons in the PG had action potentials that had a fast rise and fall time (sharp action potentials) as well as action potentials with a deflection or hump on the falling phase (humped action potentials), whereas action potentials of GG neurons were all sharp. There were also significant differences in the response of PG and GG neurons to the application of acetylcholine (ACh), serotonin (5HT), substance P (SP), and GABA. Whereas PG neurons responded to ACh, 5HT, SP, and GABA, GG neurons only responded to SP and GABA. In addition, the properties of GG neurons were more homogeneous than those of the PG because all the GG neurons had sharp spikes and when responses to neurotransmitters occurred, either all or most of the neurons responded. These differences between neurons of the GG and PG may relate to the type of receptor innervated. PG ganglion neurons innervate a number of receptor types on the posterior tongue and have more heterogeneous properties, while GG neurons predominantly innervate taste buds and have more homogeneous properties.


1989 ◽  
Vol 61 (4) ◽  
pp. 769-779 ◽  
Author(s):  
N. Uchimura ◽  
H. Higashi ◽  
S. Nishi

1. The membrane properties and synaptic responses of guinea pig nucleus accumbens neurons in vitro were studied with intracellular recording methods. 2. The population of neurons could be divided into groups of low (20-60 M omega, average 46.5 M omega) and high (60-180 M omega, average 96.5 M omega) input resistance. The resting membrane potential in both groups was approximately -70 mV. 3. Other membrane properties were quite similar in both groups. Inward rectification occurred at potentials more negative than -80 mV; this was blocked by Cs+ (2 mM). Membrane potential oscillations were observed at potentials between -65 and -55 mV; these were blocked by tetrodotoxin (TTX, 0.5 microM). Outward rectification occurred at potentials less negative than -45 mV; this was depressed by tetraethylammonium (TEA, 10 mM). 4. Action potentials elicited by small depolarizing current pulses (2-5 ms, 0.3-0.5 nA) were approximately 95 mV in amplitude and 1.0 ms in duration. The afterhyperpolarization following each action potential was less than 30 ms in duration, and no accommodation of action-potential discharge was seen at frequencies up to 40 Hz. The action potentials were reversibly blocked by TTX (0.3 microM). In addition, TTX-insensitive, Ca2+-dependent spikes were evoked by passing larger and more prolonged current pulses (greater than 40 ms, greater than 0.5 nA) across the membrane. 5. Focal electrical stimulation of the slice surface with low intensity (1 ms, less than 10 V) elicited excitatory postsynaptic potentials (EPSPs) in neurons of both high- and low-resistance groups. The reversal potential (+10.2 mV) for the EPSPs was close to the reversal potential (+7.7 mV) of the responses to glutamate applied in the superfusing solution. The N-methyl-D-aspartic acid (NMDA) receptor antagonists, D-alpha-aminoadipic acid (1 mM) and DL-2-amino-5-phosphonovaleric acid (DL-APV, 250 microM), reversibly depressed the EPSP; the glutamate uptake inhibitor, L-aspartic acid-beta-hydroxamate (50 microM), or removal of Mg2+ from the superfusate, augmented the EPSP. 6. When the intensity of the focal stimulus was increased (1 ms, greater than or equal to 10 V), a second larger depolarizing response (duration, 800 ms to 2 s) could be evoked in addition to the smoothly graded EPSP. This was seen only in cells of the high-resistance group (90-130 M omega).(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 72 (2) ◽  
pp. 531-541 ◽  
Author(s):  
S. Charpier ◽  
J. C. Behrends ◽  
Y. T. Chang ◽  
C. Sur ◽  
H. Korn

1. Presynaptic activity in the inhibitory network impinging on the Mauthner (M-) cell was investigated in the goldfish medulla in vivo using extra- and intracellular recordings. The inhibitory presynaptic volley elicited by stimulation of the contralateral vestibular nerve consisted of multiple successive peaks at high frequency (up to 1,000 Hz). Less pronounced multicomponent responses were recorded after antidromic activation of the M-cell. Such high-frequency “oscillatory” field potentials also occurred spontaneously. 2. In intracellular recordings, a subset of inhibitory interneurons showed evoked and spontaneous burst discharge. Burst action potentials were correlated with the peaks in the extracellular volley, suggesting that repetitive firing of these cells is synchronized. Nonbursting cells, on the other hand, fired single action potentials in response to vestibular stimuli and were not activated via the M-cell collateral network. 3. Bursting cells were determined morphologically to be part of the feedback inhibitory circuit. Their responses to stimulation of the contralateral vestibular nerve thus suggest the existence of a crossed excitatory pathway to these interneurons. 4. Vestibular-evoked excitatory postsynaptic potentials (EPSPs) in bursting interneurons had a short latency of 0.781 +/- 0.08 ms (mean +/- SD, n = 18) but reached threshold at 2.25 +/- 1 ms (n = 21). These characteristics are suggestive of a chemically mediated EPSP. Indeed, the evoked synchronous repetitive activity of these cells was prevented by superfusion with excitatory amino-acid receptor antagonists. 5. Bursting neurons showed several characteristics that differentiate them from nonbursting cells, including brief action potentials, plateau responses, and intense spontaneous subthreshold activity. 6. With extracellular recordings, tetanization of contralateral vestibular primary afferents evoked a long-lasting potentiation of oscillatory population responses in 11 of 27 cases. Furthermore in three experiments, the frequency of occurrence of spontaneous bursts was enhanced and a similar facilitation was detected at the intracellular level. 7. We conclude that a subset of interneurons in this inhibitory network is capable of repetitive discharges and that evoked as well as spontaneous firing in this population is synchronized. Although electrical coupling between interneurons may mediate synchronization and intrinsic membrane properties may promote burst activity, our data suggest strongly that repetitive firing requires chemically mediated transmission. Furthermore they indicate that the mechanisms underlying evoked as well as spontaneous bursting in this population show activity-dependent plasticity.


Sign in / Sign up

Export Citation Format

Share Document