Interactive effects among several stimulus parameters on the responses of striate cortical complex cells

1991 ◽  
Vol 66 (2) ◽  
pp. 379-389 ◽  
Author(s):  
T. J. Gawne ◽  
B. J. Richmond ◽  
L. M. Optican

1. Although neurons within the visual system are often described in terms of their responses to particular patterns such as bars and edges, they are actually sensitive to many different stimulus features, such as the luminances making up the patterns and the duration of presentation. Many different combinations of stimulus parameters can result in the same neuronal response, raising the problem of how the nervous system can extract information about visual stimuli from such inherently ambiguous responses. It has been shown that complex cells transmit significant amounts of information in the temporal modulation of their responses, raising the possibility that different stimulus parameters are encoded in different aspects of the response. To find out how much information is actually available about individual stimulus parameters, we examined the interactions among three stimulus parameters in the temporally modulated responses of striate cortical complex cells. 2. Sixteen black and white patterns were presented to two awake monkeys at each of four luminance-combinations and five durations, giving a total of 320 unique stimuli. Complex cells were recorded in layers 2 and 3 of striate cortex, with the stimuli centered on the receptive fields as determined by mapping with black and white bars. 3. An analysis of variance (ANOVA) was applied to these data with the three stimulus parameters of pattern, the luminance-combinations, and duration as the independent variables. The ANOVA was repeated with the magnitude and three different aspects of the temporal modulation of the response as the dependent variables. For the 19 neurons studied, many of the interactions between the different stimulus parameters were statistically significant. For some response measures the interactions accounted for more than one-half of the total response variance. 4. We also analyzed the stimulus-response relationships with the use of information theoretical techniques. We defined input codes on the basis of each stimulus parameter alone, as well as their combinations, and output codes on the basis of response strength, and on three measures of temporal modulation, also taken individually and together. Transmitted information was greatest when the response of a neuron was interpreted as a temporally modulated message about combinations of all three stimulus parameters. The interaction terms of the ANOVA suggest that the response of a complex cell can only be interpreted as a message about combinations of all three stimulus parameters.(ABSTRACT TRUNCATED AT 400 WORDS)

1976 ◽  
Vol 39 (3) ◽  
pp. 512-533 ◽  
Author(s):  
J. R. Wilson ◽  
S. M. Sherman

1. Receptive-field properties of 214 neurons from cat striate cortex were studied with particular emphasis on: a) classification, b) field size, c) orientation selectivity, d) direction selectivity, e) speed selectivity, and f) ocular dominance. We studied receptive fields located throughtout the visual field, including the monocular segment, to determine how receptivefield properties changed with eccentricity in the visual field.2. We classified 98 cells as "simple," 80 as "complex," 21 as "hypercomplex," and 15 in other categories. The proportion of complex cells relative to simple cells increased monotonically with receptive-field eccenticity.3. Direction selectivity and preferred orientation did not measurably change with eccentricity. Through most of the binocular segment, this was also true for ocular dominance; however, at the edge of the binocular segment, there were more fields dominated by the contralateral eye.4. Cells had larger receptive fields, less orientation selectivity, and higher preferred speeds with increasing eccentricity. However, these changes were considerably more pronounced for complex than for simple cells.5. These data suggest that simple and complex cells analyze different aspects of a visual stimulus, and we provide a hypothesis which suggests that simple cells analyze input typically from one (or a few) geniculate neurons, while complex cells receive input from a larger region of geniculate neurons. On average, this region is invariant with eccentricity and, due to a changing magnification factor, complex fields increase in size with eccentricity much more than do simple cells. For complex cells, computations of this geniculate region transformed to cortical space provide a cortical extent equal to the spread of pyramidal cell basal dendrites.


1997 ◽  
Vol 78 (1) ◽  
pp. 366-382 ◽  
Author(s):  
Earl L. Smith ◽  
Yuzo Chino ◽  
Jinren Ni ◽  
Han Cheng

Smith, Earl L., III, Yuzo Chino, Jinren Ni, and Han Cheng. Binocular combination of contrast signals by striate cortical neurons in the monkey. J. Neurophysiol. 78: 366–382, 1997. With the use of microelectrode recording techniques, we investigated how the contrast signals from the two eyes are combined in individual cortical neurons in the striate cortex of anesthetized and paralyzed macaque monkeys. For a given neuron, the optimal spatial frequency, orientation, and direction of drift for sine wave grating stimuli were determined for each eye. The cell's disparity tuning characteristics were determined by measuring responses as a function of the relative interocular spatial phase of dichoptic stimuli that consisted of the optimal monocular gratings. Binocular contrast summation was then investigated by measuring contrast response functions for optimal dichoptic grating pairs that had left- to right-eye interocular contrast ratios that varied from 0.1 to 10. The goal was to determine the left- and right-eye contrast components required to produce a criterion threshold response. For all functional classes of cortical neurons and for both cooperative and antagonistic binocular interactions, there was a linear relationship between the left- and right-eye contrast components required to produce a threshold response. Thus, for example for cooperative binocular interactions, a reduction in contrast to one eye was counterbalanced by an equivalent increase in contrast to the other eye. These results showed that in simple cells and phase-specific complex cells, the contrast signals from the two eyes were linearly combined at the subunit level before nonlinear rectification. In non-phase-specific complex cells, the linear binocular convergence of contrast signals could have taken place either before or after the rectification process, but before spike generation. In addition, for simple cells, vector analysis of spatial summation showed that the inputs from the two eyes were also combined in a linear manner before nonlinear spike-generating mechanisms. Thus simple cells showed linear spatial summation not only within and between subregions in a given receptive field, but also between the left- and right-eye receptive fields. Overall, the results show that the effectiveness of a stimulus in producing a response reflects interocular differences in the relative balance of inputs to a given cell, however, the eye of origin of a light-evoked signal has no specific consequence.


1990 ◽  
Vol 64 (2) ◽  
pp. 351-369 ◽  
Author(s):  
B. J. Richmond ◽  
L. M. Optican ◽  
H. Spitzer

1. Previously we developed a new approach for investigating visual system neuronal activity in which single neurons are considered to be communication channels transmitting stimulus-dependent codes in their responses. Application of this approach to the stimulus-response relations of inferior temporal (IT) neurons showed that these carry stimulus-dependent information in the temporal modulation as well as in the strength of their responses. IT cortex is a late station in the visual processing stream. Presumably the neuronal properties arise from the properties of the inputs. However, the discovery that IT neuronal spike trains transmit information in stimulus-dependent temporally modulated codes could not be assumed to be true for those earlier stations, so the techniques used in the earlier study were applied to single-striate cortical neurons in the studies reported here. 2. Single-striate cortical neurons were recorded from three awake, fixating rhesus monkeys. The neurons were stimulated by two sets of patterns. The first set was made up of 128 black-and-white patterns based on a complete, orthogonal set of two-dimensional Walsh-Hadamard functions. These stimuli appear as combinations of black-and-white rectangles and squares, and they fully span the range of all possible black-and-white pictures that can be constructed in an 8 x 8 grid. Except for the stimulus that appeared as an all-white or all-black square, each stimulus had equal areas of white and black. The second stimulus set was made up of single bars constructed in the same 8 x 8 grid as the Walsh stimuli. These were presented both as black against a gray background and white against a gray background. The stimuli were centered on the receptive field, and each member of the stimulus set was presented once before any stimulus appeared again. 3. The responses of 21 striate cortical neurons were recorded and analyzed. Two were identified as simple cells and the other 19 as complex cells according to the criteria originally used by Hubel and Wiesel. The stimulus set elicited a wide variety of response strengths and patterns from each neuron. The responses from both the bars and the Walsh set could be used to differentiate and classify simple and complex cells. 4. The responses of both simple and complex cells showed striking stimulus-related strength and temporal modulation. For all of the complex cells there were instances where the responses to a stimulus and its contrast-reversed mate were substantially different in response strength or pattern, or both.(ABSTRACT TRUNCATED AT 400 WORDS)


2007 ◽  
Vol 24 (4) ◽  
pp. 647-661 ◽  
Author(s):  
NORBERTO M. GRZYWACZ ◽  
FRANKLIN R. AMTHOR

The spatial and temporal interactions in the receptive fields of On-Off directionally selective (DS) ganglion cells endow them with directional selectivity. Using a variety of stimuli, such as sinusoidal gratings, we show that these interactions make directional selectivity of the DS ganglion cell robust with respect to stimulus parameters such as contrast, speed, spatial frequency, and extent of motion. Moreover, unlike the directional selectivity of striate-cortex cells, On-Off DS ganglion cells display directional selectivity to motions not oriented perpendicularly to the contour of the objects. We argue that these cells may achieve such high robustness by combining multiple mechanisms of directional selectivity.


2003 ◽  
Vol 90 (2) ◽  
pp. 822-831 ◽  
Author(s):  
James R. Müller ◽  
Andrew B. Metha ◽  
John Krauskopf ◽  
Peter Lennie

We examined in anesthetized macaque how the responses of a striate cortical neuron to patterns inside the receptive field were altered by surrounding patterns outside it. The changes in a neuron's response brought about by a surround are immediate and transient: they arise with the same latency as the response to a stimulus within the receptive field (this argues for a source locally in striate cortex) and become less effective as soon as 27 ms later. Surround signals appeared to exert their influence through divisive interaction (normalization) with those arising in the receptive field. Surrounding patterns presented at orientations slightly oblique to the preferred orientation consistently deformed orientation tuning curves of complex (but not simple) cells, repelling the preferred orientation but without decreasing the discriminability of the preferred grating and ones at slightly oblique orientations. By reducing responsivity and changing the tuning of complex cells locally in stimulus space, surrounding patterns reduce the correlations among responses of neurons to a particular stimulus, thus reducing the redundancy of image representation.


1997 ◽  
Vol 78 (3) ◽  
pp. 1353-1362 ◽  
Author(s):  
Earl L. Smith ◽  
Yuzo M. Chino ◽  
Jinren Ni ◽  
Han Cheng ◽  
M.L.J. Crawford ◽  
...  

Smith, Earl L., III, Yuzo M. Chino, Jinren Ni, Han Cheng, M.L.J. Crawford, and Ronald S. Harwerth. Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision. J. Neurophysiol. 78: 1353–1362, 1997. We investigated the nature of residual binocular interactions in the striate cortex (V1) of monkey models for the two most common causes of visual dysfunction in young children, specifically anisometropia and strabismus. Infant rhesus monkeys were raised wearing either anisometropic spectacle lenses that optically defocused one eye or ophthalmic prisms that optically produced diplopia and binocular confusion. Earlier psychophysical investigations had demonstrated that all subjects exhibited permanent binocular vision deficits and, in some cases, amblyopia. When the monkeys were adults, the responses of individual V1 neurons were studied with the use of microelectrode recording techniques while the animals were anesthetized and paralyzed. The manner in which the signals from the two eyes were combined in individual cells was investigated by dichoptically stimulating both eyes simultaneously with drifting sine wave gratings. In both lens- and prism-reared monkeys, fewer neurons had balanced ocular dominances and greater numbers of neurons were excited by only one eye. However, many neurons that appeared to be monocular exhibited clear binocular interactions during dichoptic stimulation. For the surviving binocular neurons, the maximum binocular response amplitudes were lower than normal; fewer neurons, particularly complex cells, were sensitive to relative interocular spatial phase disparities; and the remaining disparity-sensitive neurons exhibited lower degrees of binocular interaction. In prism-reared monkeys, an unusually high proportion of complex cells exhibited binocular suppression during dichoptic stimulation. Binocular contrast summation experiments showed that for both cooperative and antagonistic binocular interactions, contrast signals from the two eyes were combined by individual neurons in a normal linear fashion in both lens- and prism-reared monkeys. The observed binocular deficits appear to reflect a reduction in functional inputs from one eye and/or spatial imprecision in the monocular receptive fields rather than an aberrant form of binocular interaction. In the prism-reared monkeys, the predominance of suppression suggests that inhibitory connections were, however, less susceptible to diplopia and confusion than excitatory connections. Overall, there were many parallels between V1 physiology in our monkey models and the residual vision of humans with anisometropia or strabismus.


1983 ◽  
Vol 49 (3) ◽  
pp. 595-610 ◽  
Author(s):  
J. G. Malpeli

1. Injections of 4 mM cobaltous chloride were used to block synaptic transmission in layer A of the lateral geniculate nucleus (LGN) without blocking fibers of passage going to or arising from other layers. 2. Selective inactivation of geniculate layer A virtually abolished all visual activity in cortical layers 4ab, 4c, and 6. Under these conditions, the stimulus-evoked response, orientation selectivity, and direction selectivity of cells in layers 2 and 3 were not seriously affected. In layer 5, the effects of the block were more variable, with special complex cells least affected and simple cells most affected. 3. Since the organization of complex receptive fields and the maintenance of normal orientation selectivity in supragranular layers survive disruption of major interlaminar interactions, it appears that much of the functional architecture of cat striate cortex does not depend on the integrity of the column. 4. These results support the idea that each layer of the LGN is a functional unit with a unique pattern of access to the various layers of visual cortex.


2012 ◽  
Vol 107 (5) ◽  
pp. 1457-1475 ◽  
Author(s):  
Vikram Jakkamsetti ◽  
Kevin Q. Chang ◽  
Michael P. Kilgard

Environmental enrichment induces powerful changes in the adult cerebral cortex. Studies in primary sensory cortex have observed that environmental enrichment modulates neuronal response strength, selectivity, speed of response, and synchronization to rapid sensory input. Other reports suggest that nonprimary sensory fields are more plastic than primary sensory cortex. The consequences of environmental enrichment on information processing in nonprimary sensory cortex have yet to be studied. Here we examine physiological effects of enrichment in the posterior auditory field (PAF), a field distinguished from primary auditory cortex (A1) by wider receptive fields, slower response times, and a greater preference for slowly modulated sounds. Environmental enrichment induced a significant increase in spectral and temporal selectivity in PAF. PAF neurons exhibited narrower receptive fields and responded significantly faster and for a briefer period to sounds after enrichment. Enrichment increased time-locking to rapidly successive sensory input in PAF neurons. Compared with previous enrichment studies in A1, we observe a greater magnitude of reorganization in PAF after environmental enrichment. Along with other reports observing greater reorganization in nonprimary sensory cortex, our results in PAF suggest that nonprimary fields might have a greater capacity for reorganization compared with primary fields.


Sign in / Sign up

Export Citation Format

Share Document