Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus

1992 ◽  
Vol 67 (3) ◽  
pp. 547-560 ◽  
Author(s):  
Y. Shinoda ◽  
Y. Sugiuchi ◽  
T. Futami ◽  
R. Izawa

1. Single axons of pontine nucleus neurons (PN axons) receiving cerebral input were stained intra-axonally with horseradish peroxidase (HRP) in the cerebellum of cats. The axonal trajectory of single PN axons was reconstructed from serial sections of the cerebellum and the brain stem. 2. Axons were penetrated in the white matter near the dentate nucleus, and, after electrophysiological identification, PN axons were injected iontophoretically with HRP. The identification criteria for the PN axons were 1) their direct responses to stimulation of the contralateral pontine nucleus (PN), 2) their synaptic activation from the contralateral cerebral cortex, and 3) the decrease in threshold for evoking direct spikes in stimulation of the PN by conditioning stimuli applied in the cerebral cortex. 3. Two hundred thirty-three axons were electrophysiologically identified as PN axons receiving the input from the cerebral cortex. Ninety-six of them were stained successfully with HRP, and reconstructions were made from 40 well-stained PN axons. All of them gave rise to mossy fibers and terminated in the granular layer of the cerebellar cortex as typical mossy fiber rosettes. Out of these, 22 gave axon collaterals to the dentate nucleus. Virtually all of the axon branches observed in the dentate nucleus were axon collaterals of mossy fibers from the PN to the cerebellar cortex. In 7 of these 22 PN axons, cell bodies were retrogradely labeled with HRP, and all of them were found in the contralateral PN. 4. The stained-stem axons arising from the PN ran medially in the pons, crossed the midline, and then ascended dorsocaudally in the branchium pontis. After passing in the white matter anterior to or lateral to the dentate nucleus, they entered into the cerebellar cortex. On their way, one to three axon collaterals were given off from parent axons to the dentate nucleus. The diameter of these collaterals was very thin (mean, 0.6 microns), compared with the large diameter of the parent axons (mean, 2.1 microns). 5. Some axon collaterals were very simple and had only one terminal branch with or without short branchlets, whereas others were more complex, and single axon collaterals ramified before forming a terminal arborization. Axon collaterals of single PN axons mainly spread mediolaterally or dorsoventrally in the frontal plane but had a very narrow rostrocaudal extension. 6. Terminal branches usually bore swellings en passant along their length and one terminal swelling at their end. The number of swellings per axon collateral ranged 23-180 (116 +/- 52, mean +/- SD).(ABSTRACT TRUNCATED AT 400 WORDS)

Author(s):  
Shinoda Yoshikazu ◽  
Sugiuchi Yuriko ◽  
Futami Takahiro

ABSTRACT:Intracellular recording was made from dentate nucleus neurons (DNNs) in anesthetized cats, to investigate cerebral inputs to DNNs and their responsible pathways. Stimulation of the medial portion of the contralateral pericruciate cortex most effectively produced EPSPs followed by long-lasting IPSPs in DNNs. Stimulation of the pontine nucleus (PN), the nucleus reticularis tegmenti pontis (NRTP) and the inferior olive (IO) produced monosynaptic EPSPs and polysynaptic IPSPs in DNNs. The results indicate that the excitatory input from the cerebral cortex to DNNs is at least partly relayed via the PN, the NRTP and the 10. Intraaxonal injection of HRP visualized the morphology of mossy fibers from the PN to the DN and the cerebellar cortex. The functional significance of the excitatory inputs from the PN and the NRTP to the DN is discussed in relation to the motor control mechanisms of the cerebellum.


1955 ◽  
Vol 33 (3) ◽  
pp. 395-403 ◽  
Author(s):  
Irving H. Heller ◽  
K. A. C. Elliott

Per unit weight, cerebral and cerebellar cortex respire much more actively than corpus callosum. The rate per cell nucleus is highest in cerebral cortex, lower in corpus callosum, and still lower in cerebellar cortex. The oxygen uptake rates of the brain tumors studied, with the exception of an oligodendroglioma, were about the same as that of white matter on the weight basis but lower than that of cerebral cortex or white matter on the cell basis. In agreement with previous work, an oligodendroglioma respired much more actively than the other tumors. The rates of glycolysis of the brain tumors per unit weight were low but, relative to their respiration rate, glycolysis was higher than in normal gray or white matter. Consideration of the figures obtained leads to the following tentative conclusions: Glial cells of corpus callosum respire more actively than the neurons of the cerebellar cortex. Neurons of the cerebral cortex respire on the average much more actively than neurons of the cerebellar cortex or glial cells. Considerably more than 70% of the oxygen uptake by cerebral cortex is due to neurons. The oxygen uptake rates of normal oligodendroglia and astrocytes are probably about the same as the rates found per nucleus in an oligodendroglioma and in astrocytomas; oligodendroglia respire much more actively than astrocytes.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Andrei Khilkevich ◽  
Juan Zambrano ◽  
Molly-Marie Richards ◽  
Michael Dean Mauk

Most movements are not unitary, but are comprised of sequences. Although patients with cerebellar pathology display severe deficits in the execution and learning of sequences (Doyon et al., 1997; Shin and Ivry, 2003), most of our understanding of cerebellar mechanisms has come from analyses of single component movements. Eyelid conditioning is a cerebellar-mediated behavior that provides the ability to control and restrict inputs to the cerebellum through stimulation of mossy fibers. We utilized this advantage to test directly how the cerebellum can learn a sequence of inter-connected movement components in rabbits. We show that the feedback signals from one component are sufficient to serve as a cue for the next component in the sequence. In vivo recordings from Purkinje cells demonstrated that all components of the sequence were encoded similarly by cerebellar cortex. These results provide a simple yet general framework for how the cerebellum can use simple associate learning processes to chain together a sequence of appropriately timed responses.


1955 ◽  
Vol 33 (1) ◽  
pp. 395-403 ◽  
Author(s):  
Irving H. Heller ◽  
K. A. C. Elliott

Per unit weight, cerebral and cerebellar cortex respire much more actively than corpus callosum. The rate per cell nucleus is highest in cerebral cortex, lower in corpus callosum, and still lower in cerebellar cortex. The oxygen uptake rates of the brain tumors studied, with the exception of an oligodendroglioma, were about the same as that of white matter on the weight basis but lower than that of cerebral cortex or white matter on the cell basis. In agreement with previous work, an oligodendroglioma respired much more actively than the other tumors. The rates of glycolysis of the brain tumors per unit weight were low but, relative to their respiration rate, glycolysis was higher than in normal gray or white matter. Consideration of the figures obtained leads to the following tentative conclusions: Glial cells of corpus callosum respire more actively than the neurons of the cerebellar cortex. Neurons of the cerebral cortex respire on the average much more actively than neurons of the cerebellar cortex or glial cells. Considerably more than 70% of the oxygen uptake by cerebral cortex is due to neurons. The oxygen uptake rates of normal oligodendroglia and astrocytes are probably about the same as the rates found per nucleus in an oligodendroglioma and in astrocytomas; oligodendroglia respire much more actively than astrocytes.


2014 ◽  
Vol 45 (3) ◽  
pp. 334-345 ◽  
Author(s):  
Paweł Krukow

AbstractAlthough considerable research has been devoted to cognitive functions deteriorating due to diseases of cardiovascular system, rather less attention has been paid to their theoretical background. Progressive vascular disorders as hypertension, atherosclerosis and carotid artery stenosis generate most of all pathological changes in the white matter, that cause specific cognitive disorder: disconnection syndromes, and disturbances in the dynamic aspect of information processing. These features made neuropsychological disorders secondary to cardiovascular diseases different than the effects of cerebral cortex damage, which may be interpreted modularly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Lavrov ◽  
Timur Latypov ◽  
Elvira Mukhametova ◽  
Brian Lundstrom ◽  
Paola Sandroni ◽  
...  

AbstractElectrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document