Changes in serotonin-induced potentials during spinal cord development

1993 ◽  
Vol 69 (4) ◽  
pp. 1338-1349 ◽  
Author(s):  
L. Ziskind-Conhaim ◽  
B. S. Seebach ◽  
B. X. Gao

1. Motoneuron responses to serotonin (5-hydroxytryptamine, 5-HT), and the growth pattern of 5-HT projections into the ventral horn were studied in the isolated spinal cord of embryonic and neonatal rats. 2. 5-HT projections first appeared in lumbar spinal cord at days 16-17 of gestation (E16-E17) and were localized in the lateral and ventral funiculi. By E18, the projections had grown into the ventral horn, and at 1-2 days after birth they were in close apposition to motoneuron somata. 3. At E16-E17, slow-rising depolarizing potentials of 1-4 mV were recorded intracellularly in lumbar motoneurons in response to bath application of 5-HT. These potentials were not apparent after E18; at that time 5-HT generated long-lasting depolarizations with an average amplitude of 6 mV, and an increase of 11% in membrane resistance. Starting at E18, 5-HT also induced high-frequency fast-rising potentials that were blocked by antagonists of glutamate, gamma-aminobutyric acid, and glycine. 4. Motoneuron responses to 5-HT increased significantly after birth, when 5-HT produced an average depolarization of 19 mV and repetitive firing of action potentials. 5. Tetrodotoxin and high Mg2+ did not reduce the amplitude of the long-lasting depolarizations, which suggested that they were produced by direct action of 5-HT on motoneuron membrane. 6. At all developmental ages, 5-HT reduced the amplitude of dorsal root-evoked potentials. The suppressed responses were neither due to 5-HT-induced depolarization nor the result of a decrease in motoneuron excitability. 7. The pharmacological profile of 5-HT-induced potentials was studied with the use of various agonists and antagonists of 5-HT. The findings indicated that the actions of 5-HT on spinal neurons were mediated via multiple 5-HT receptor subtypes. 8. Our results suggested that 5-HT excited spinal neurons before 5-HT projections grew into the ventral horn. The characteristics of 5-HT-induced potentials changed, however, at the time when the density of 5-HT projections increased in the motor nuclei.

1984 ◽  
Vol 52 (3) ◽  
pp. 449-458 ◽  
Author(s):  
A. R. Light ◽  
R. G. Durkovic

Single-unit recordings from 312 units of lamina I-VII of the lumbar spinal cord of unanesthetized, decerebrate, T8 spinal cats were used to determine the somatotopic and laminar organization of spinal neurons responding to cutaneous stimulation of the hindlimb. Properties of cells confined to different Rexed laminae (I-VII) were shown to differ in several respects, including responses to variations in stimulus intensity, receptive-field areas, spontaneous frequencies, and central delays. Spinal cord neurons with similarly localized cutaneous receptive fields were found to be organized in sagittally oriented rectangular columns. These columns were 7 to at least 20 mm long (rostral-caudal axis), 0.5-1.0 mm wide, and could encompass laminae I-VII in depth. Touch, pressure, and pinch were effective excitatory inputs into each column subserving a given receptive-field location. A map of the somatotopic organization of units in the horizontal plane is presented, which in general confirms previous reports and in particular deals with the organization of units with receptive fields on the plantar cushion and individual toes.


1977 ◽  
Vol 55 (3) ◽  
pp. 399-412 ◽  
Author(s):  
Larry M. Jordan ◽  
David A. McCrea ◽  
John D. Steeves ◽  
John E. Menzies

Histochemical and electrophysiological procedures were carried out to determine the cell types in the ventral horn which are in close contact with noradrenergic terminals and to identify the types of neurons in the ventral horn which are influenced by noradrenaline (NA). Fluorescence histochemical studies revealed that noradrenaline-containing fibers rarely form intimate contacts with alpha motoneurons, whereas many small interneurons which are closely invested with fluorescent fibers can be found near the motoneurons. The effects of microiontophoretically applied NA on interneurons were examined in the lateral motor areas of the lumbar spinal cord ventral horn. NA had a substantial depressant action on 43% of cells in chloralose-anesthetized and decerebrate cats; it excited 6% of the cells, and was without effect on the rest. The cells which were depressed by NA could be excited by electrical stimulation of high threshold muscle afferents or skin afferents, and they could be influenced from a variety of exteroceptive and proprioceptive inputs. Owing to considerable convergence on the affected interneurons, no distinct population of NA-sensitive interneurons could be identified. Many of the interneurons strongly depressed by NA were found near the motor nuclei. The hypothesis is presented that inhibitory actions of NA on interneurons in the motor nuclei might explain its hyperpolarizing action on motoneurons.


2019 ◽  
Vol 33 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Kazu Kobayakawa ◽  
Kyleigh Alexis DePetro ◽  
Hui Zhong ◽  
Bau Pham ◽  
Masamitsu Hara ◽  
...  

Background. We previously demonstrated that step training leads to reorganization of neuronal networks in the lumbar spinal cord of rodents after a hemisection (HX) injury and step training, including increases excitability of spinally evoked potentials in hindlimb motor neurons. Methods. In this study, we investigated changes in RNA expression and synapse number using RNA-Seq and immunohistochemistry of the lumbar spinal cord 23 days after a mid-thoracic HX in rats with and without post-HX step training. Results. Gene Ontology (GO) term clustering demonstrated that expression levels of 36 synapse-related genes were increased in trained compared with nontrained rats. Many synaptic genes were upregulated in trained rats, but Lrrc4 (coding NGL-2) was the most highly expressed in the lumbar spinal cord caudal to the HX lesion. Trained rats also had a higher number of NGL-2/synaptophysin synaptic puncta in the lumbar ventral horn. Conclusions. Our findings demonstrate clear activity-dependent regulation of synapse-related gene expression post-HX. This effect is consistent with the concept that activity-dependent phenomena can provide a mechanistic drive for epigenetic neuronal group selection in the shaping of the reorganization of synaptic networks to learn the locomotion task being trained after spinal cord injury.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 38
Author(s):  
Ji Hyeon Ahn ◽  
Tae-Kyeong Lee ◽  
Bora Kim ◽  
Jae-Chul Lee ◽  
Hyun-Jin Tae ◽  
...  

Hypothermia enhances outcomes of patients after resuscitation after cardiac arrest (CA). However, the underlying mechanism is not fully understood. In this study, we investigated effects of hypothermic therapy on neuronal damage/death, microglial activation, and changes of endogenous antioxidants in the anterior horn in the lumbar spinal cord in a rat model of asphyxial CA (ACA). A total of 77 adult male Sprague–Dawley rats were randomized into five groups: normal, sham ACA plus (+) normothermia, ACA + normothermia, sham ACA + hypothermia, and ACA + hypothermia. ACA was induced for 5 min by injecting vecuronium bromide. Therapeutic hypothermia was applied after return of spontaneous circulation (ROSC) via rapid cooling with isopropyl alcohol wipes, which was maintained at 33 ± 0.5 °C for 4 h. Normothermia groups were maintained at 37 ± 0.2 °C for 4 h. Neuronal protection, microgliosis, oxidative stress, and changes of endogenous antioxidants were evaluated at 12 h, 1 day, and 2 days after ROSC following ACA. ACA resulted in neuronal damage from 12 h after ROSC and evoked obvious degeneration/loss of spinal neurons in the ventral horn at 1 day after ACA, showing motor deficit of the hind limb. In addition, ACA resulted in a gradual increase in microgliosis with time after ACA. Therapeutic hypothermia significantly reduced neuronal loss and attenuated hind limb dysfunction, showing that hypothermia significantly attenuated microgliosis. Furthermore, hypothermia significantly suppressed ACA-induced increases of superoxide anion production and 8-hydroxyguanine expression, and significantly increased superoxide dismutase 1 (SOD1), SOD2, catalase, and glutathione peroxidase. Taken together, hypothermic therapy was found to have a substantial impact on changes in ACA-induced microglia activation, oxidative stress factors, and antioxidant enzymes in the ventral horn of the lumbar spinal cord, which closely correlate with neuronal protection and neurological performance after ACA.


2016 ◽  
Vol 115 (1) ◽  
pp. 363-369 ◽  
Author(s):  
Benjamin E. Keeler ◽  
Perrine Lallemand ◽  
Mukund M. Patel ◽  
Lisandra E. de Castro Brás ◽  
Stefan Clemens

Normal aging is associated with a decrease in motor function, a concomitant increase in muscle stiffness and tone, and a decrease in dopamine (DA) levels in the spinal cord. The striatum plays a critical role in the control of motor function, and it receives strong DA innervation from the substantia nigra. However, locomotor activity also requires the activation of motoneurons in the lumbar spinal cord, which in the mouse express all five DA receptor subtypes (D1–D5). Of these, the D3 receptor (D3R) expresses the highest affinity to DA and mediates inhibitory actions, while activation of the lower-affinity D1 receptor (D1R) system promotes excitatory effects. To test whether the aging-related decrease in DA levels is associated with corresponding changes in DA receptor protein expression levels, we probed with Western blot and immunohistochemical techniques for D1R and D3R protein expression levels over the normal life span of the mouse. We found that with age D1R expression levels increased in both striatum and spinal cord, while D3R expression levels remained stable in the striatum or slightly decreased in the spinal cord. The resulting D1-to-D3 ratio indicates a strong upregulation of D1R-mediated pathways in old animals, which is particularly pronounced in the lumbar spinal cord. These data suggest that aging may be associated with a shift in DA-mediated pathways in striatum and spinal cord, which in turn could be an underlying factor in the emergence of aging- and DA-related motor dysfunctions such as Parkinson's disease or Restless Legs Syndrome (RLS).


2016 ◽  
Vol 118 (7) ◽  
pp. 659-664
Author(s):  
Vladimir A. Maisky ◽  
Olena P. Mankivska ◽  
Andriy V. Maznychenko ◽  
Oleh V. Vlasenko ◽  
Olexandr V. Dovgan’ ◽  
...  

2020 ◽  
Author(s):  
Alastair J Kirby ◽  
Thomas Palmer ◽  
Richard Mead ◽  
Ronaldo Ichiyama ◽  
Samit Chakrabarty

AbstractMice with transgenic expression of human SOD1G93A are a widely used model of ALS, with a caudal-rostral progression of motor impairment. Previous studies have quantified the progression of motoneurone (MN) degeneration based on size, even though alpha (α-) and gamma (γ-) MNs overlap in size. Therefore, using molecular markers and synaptic inputs, we quantified the survival of α-MNs and γ-MNs at the lumbar and cervical spinal segments of 3- and 4-month SOD1G93A mice, to investigate whether there is a caudal-rostral progression of MN death. By 3-months, in the cervical and lumbar spinal cord, there was α-MN degeneration with complete γ-MN sparing. At 3-months the cervical spinal cord had more α-MNs per ventral horn than the lumbar spinal cord, in SOD1G93A mice. A similar spatial trend of degeneration was observed in the corticospinal tract, which remained intact in the cervical spinal cord at 3- and 4-months of age. These findings agree with the corticofugal synaptopathy model, that α-MN and CST of the lumbar spinal cord are more susceptible to degeneration in SOD1G93A mice. Hence, there is spatial and temporal caudal-rostral progression of α-MN and CST degeneration in SOD1G93A mice.HighlightsSOD1G93A mice display a caudal-rostral progression of motor impairment.Lumbar spinal cord of SOD1G93A mice has an enhanced susceptibility to degeneration.SOD1G93A mice exhibit a caudal-rostral progression of α-MN and CST degeneration


1990 ◽  
Vol 64 (1) ◽  
pp. 299-311 ◽  
Author(s):  
V. Neugebauer ◽  
H. G. Schaible

1. In the spinalized cat, nociceptive spinal neurons with knee input show enhanced responses to mechanical stimulation of that joint once an inflammation has developed in the knee. Enhanced responses may result from increased afferent inflow as well as from modifications of the nociceptive processing within the spinal cord. To examine the significance of these components, we tested in 30 chloralose-anesthetized, spinalized cats whether, during development of arthritis, changes of responsiveness in spinal neurons are restricted to stimulation of the inflamed joint or whether responsiveness in these neurons is altered in general. While continuously recording from a neuron, we injected kaolin and carrageenan into one knee and tested the responses to mechanical stimuli applied to the joint and to regions adjacent to and remote from the knee during the developing arthritis. In addition, in six cats we monitored the neurons' responses to electrical stimulation of the sural nerves and the rostral lumbar spinal cord. 2. Of 32 neurons in laminae VI, VII, and VIII of the lumbar spinal cord, 15 ascending and eight nonascending cells were driven by mechanical stimulation of one or both knee joint(s). Nine of these were nociceptive specific (NS), responding exclusively or predominantly to noxious compression of the knee and other deep tissue, and 12 were wide-dynamic-range (WDR) cells with graded responses to gentle and noxious stimuli applied to the knee joint(s), deep tissue, and skin. Two neurons with high ongoing discharges had some excitatory joint input but showed marked inhibition by most stimuli used (INH neurons). The majority of the neurons had receptive fields on both legs. Nine of the 32 neurons had no input from the knee(s). 3. All 23 neurons with joint input became sensitive or more responsive to movements and gentle compression of the inflamed knee once the inflammation had developed. In general, these neurons also showed enhanced responses to compression of the adjacent muscles in thigh and lower leg. In 20 neurons, response properties were even altered for stimuli applied to regions remote from the inflamed joint, including the contralateral leg in 18 cases. We found expansion of initially restricted receptive fields (mainly in NS cells), enhancement of preexisting responses, and/or lowering of threshold to mechanical stimuli applied to these regions; few neurons developed inhibitory reactions.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document