CA3 neuron excitation and epileptiform discharge are sensitive to osmolality

1993 ◽  
Vol 69 (6) ◽  
pp. 2200-2208 ◽  
Author(s):  
V. Saly ◽  
R. D. Andrew

1. The clinical signs of rapidly developing overhydration commonly include generalized tonic-clonic seizure, which can be combatted by raising plasma osmolality. How cortical neurons respond to osmotic imbalance has been addressed only recently. In the CA3 cell region of hippocampal slices, lowered osmolality (-40 mOsm) rapidly swelled cells, increasing field potential amplitude over a period of 8 min and thereby elevating field effects and associated neuronal synchronization. 2. Over a longer time course (10-30 min), spontaneous excitatory postsynaptic potential (EPSP) amplitude gradually increased in 7 of 10 CA3 neurons recorded intracellularly. In nine additional CA3 cells, hyposmolality gradually induced combinations of action potential discharge, endogenous bursting, and increased synchronized synaptic input. All of these effects reversed in normosmotic ACSF. 3. Hyperosmotic artificial cerebrospinal fluid (ACSF) using mannitol reduced field potentials and dramatically lowered CA3 excitability by reducing spontaneous EPSP amplitude and associated bursting. Again, the gradual onset (10-30 min) of changes in spontaneous EPSP amplitude appeared independent of field potential changes, which were already maximal by 8 min. 4. Cutting mossy fibers did not affect the excitability changes induced by osmotic stress noted above. The EPSP/inhibitory postsynaptic potential (IPSP) sequence evoked from mossy fibers or stratum oriens was unaltered by osmotic change and so did not represent osmosensitive afferent input to CA3 neurons. Furthermore, as measured at the soma, resting membrane potential, cell input resistance, and the action potential threshold were unchanged in all cells. It followed that, because the CA3 neurons themselves were not responsive, a recurrent excitatory pathway could not represent the osmosensitive input.(ABSTRACT TRUNCATED AT 250 WORDS)

1991 ◽  
Vol 65 (5) ◽  
pp. 1055-1066 ◽  
Author(s):  
B. A. Ballyk ◽  
S. J. Quackenbush ◽  
R. D. Andrew

1. Lowered osmolality promotes epileptiform activity both clinically and in the hippocampal slice preparation, but it is unclear how neurons are excited. We studied the effects of altered osmolality on the electrophysiological properties of CA1 pyramidal cells in hippocampal slices by the use of field and intracellular recordings. The excitability of these neurons under various osmotic conditions was gauged by population spike (PS) amplitude, single cell properties, and evoked synaptic input. 2. The orthodromic PS recorded in stratum pyramidale and the field excitatory postsynaptic potential (EPSP) in stratum radiatum were inversely proportional in amplitude to the artificial cerebrospinal fluid (ACSF) osmolality over a range of +/- 80 milliosmoles/kgH2O (mosM). The effect was osmotic because changes occurred within the time frame expected for cellular expansion or shrinkage and because permeable substances such as dimethyl sulfoxide or glycerol were without effect. Dilutional changes in ACSF constituents were experimentally ruled out as promoting excitability. 3. To test whether the field data resulted from a change in single-cell excitability, CA1 cells were intracellularly recorded during exposure to +/- 40 mosM ACSF over 15 min. There was no consistent effect upon CA1 resting potential, cell input resistance, or action potential threshold. 4. Osmotic alteration of orthodromic and antidromic field potentials might involve a change in axonal excitability. However, the evoked afferent volley recorded in CA1 stratum pyramidale or radiatum, which represents the compound action potential (CAP) generated in presynaptic axons, remained osmotically unresponsive with regard to amplitude, duration, or latency. This was also characteristic of CAPs evoked in isolated sciatic and vagus nerve preparations exposed to +/- 80 mosM. Therefore axonal excitability and associated extracellular current flow generated periaxonally are not significantly affected by osmotic shifts. 5. The osmotic effect on field potential amplitudes appeared to be independent of synaptic transmission because the inverse relationship with osmolality held for the antidromically evoked PS. Moreover, as recorded with respect to ground, the intracellular EPSP-inhibitory postsynaptic potential (IPSP) sequence (evoked from CA3 stratum radiatum) was not altered by osmolality. 6. The PS could occasionally be recorded intracellularly as a brief negativity interrupting the evoked EPSP. In hyposmotic ACSF, the amplitude increased and action potentials arose from the trough of the negativity as expected for a field effect. This is presumably the result of enhanced intracellular channeling of current caused by the increased extracellular resistance that accompanies cellular swelling.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 62 (4) ◽  
pp. 882-895 ◽  
Author(s):  
E. Cherubini ◽  
Y. Ben-Ari ◽  
K. Krnjevic

1. The reversible blocking effect of brief anoxia (2-4 min) on synaptic transmission was studied in submerged hippocampal slices (kept mostly at 34 degrees), obtained from adult (greater than 120 g) and very young (6-50 g) Wistar rats. Excitatory postsynaptic potentials (EPSPs) were recorded with extra- and intracellular electrodes, sometimes simultaneously: in CA1, they were evoked by stratum radiation stimulation, in CA3 by hilar stimulation. 2. In slices from adults, EPSPs in CA1 were depressed by 90% after 2 min of anoxia, and postanoxic recovery was relatively slow (one-half recovery times 4.0 +/- 0.23 min, mean +/- SE). EPSPs in CA3 were consistently more resistant, especially those generated by mossy fibers; after 2 min of anoxia, these were reduced by only 14.7 +/- 5.4%. 3. In newborn animals (PN1-4), both intra- and extracellular EPSPs (but no population spikes) could be recorded in CA1. Although smaller and more fatigable than in the adult, they were much more resistant to anoxia, after 2 min being reduced by only 44.1 +/- 8.8%; and they were not abolished even after 6-7 min. On the other hand, postanoxic recovery was very rapid, being one-half complete in 2.4 +/- 0.48 min. Only large and very prolonged (giant) depolarizing PSPs [probably inhibitory postsynaptic potentials (IPSPs)] could be recorded in CA3 neurons; they were rapidly blocked by anoxia. 4. In older pups (PN6-21), the CA1 EPSPs became progressively more sensitive to anoxia. At the end of the second week, they were as rapidly blocked as in slices from adults; but postanoxic recovery remained quicker throughout this period. In CA3, EPSPs could now be evoked that were as resistant to anoxia as in adult slices. 5. In both CA1 and CA3 neurons from adult rats, anoxia (for 2-3 min) reduced the input resistance (RN) by 45.7 +/- 6.25%. In CA1 neurons, there was most often some hyperpolarization (-7.2 +/- 1.8 mV), which was less consistent in CA3 cells. The return of O2 typically led to a second (postanoxic) phase of hyperpolarization (-7.9 +/- 1.93 mV). 6. At PN1-4, the resting potential (Vm) of most cells had to be maintained by current injection; the input resistance (RN) of CA1 neurons was 70% higher than in mature cells, and there was little time-dependent inward rectification. Anoxia produced no regular changes in Vm, and reductions in RN were very small (by only 9.6 +/- 5.0%). A postanoxic hyperpolarization was seen in only 2 neurons out of 11.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 74 (2) ◽  
pp. 529-538 ◽  
Author(s):  
D. Parker

1. The fast extensor tibiae motor neuron makes direct excitatory central connections with the posterior group of flexor tibiae motor neurons in the locust metathoracic ganglion. The flexor group has a slow, a fast, and an intermediate motor neuron. The motor neurons are involved in the motor program for kicking and jumping, the defensive and escape behaviors of the locust. An antidromic action potential in fast extensor tibiae motor neuron (FETi) results in a monosynaptic, glutamatergic excitatory postsynaptic potential (EPSP) in each of the flexor motor neurons. 2. A train of 10 antidromic spikes in FETi at frequencies of 1<20 Hz resulted in depression of the amplitude of the EPSP in each of the flexor motor neurons. The depression was not significantly different in the different flexor motor neurons. The depression was greater with higher frequency stimulation and was reduced in low calcium saline. 3. After stimulation at 20 Hz, the EPSP amplitude was depressed by approximately 80%. This did not change when the number of stimuli was increased to 20, when stimulation was done in high calcium saline, or when the frequency of stimulation was increased to 50 or 100 Hz. The recovery from depression was greater after 20-Hz stimulation than at lower frequencies, although the recovery was reduced when the number of stimuli was increased, and also in high calcium saline. 4. In normal saline the depression of the EPSP amplitude was associated with a reduction of the presynaptic spike amplitude at frequencies of > or = 5 Hz. In tetraethylammonium (TEA) saline the width of a TEA-broadened spike was also reduced. The reduction in spike amplitude and spike width correlated with the depression of the EPSP. 5. Certain of these results are consistent with a depletion model of synaptic depression, whereas others are not consistent with this model. The depression may be partly due to an initial depletion of transmitter stores, and partly to modulation of the presynaptic action potential that reduces calcium entry, and therefore transmitter release. The significance of the depression on the motor program for kicking and jumping is discussed.


1996 ◽  
Vol 75 (4) ◽  
pp. 1458-1471 ◽  
Author(s):  
J. W. Gibbs ◽  
Y. F. Zhang ◽  
C. Q. Kao ◽  
K. L. Holloway ◽  
K. S. Oh ◽  
...  

1. Surgically resected tissue from the tip of the human temporal lobe of seven patients undergoing temporal lobectomy was employed to study functional properties of GABAergic inhibition mediated through activation of GABAA receptors, using patch-clamp recording techniques in acutely isolated neurons and in slices of human temporal cortex. 2. Human temporal cortical pyramidal neurons from surgically resected tissue could be acutely isolated with the use of conventional methods. These neurons appeared normal in morphology, in their intrinsic membrane properties, and in their response to application of exogenous gamma-aminobutyric acid (GABA). 3. Application of GABA to acutely isolated human temporal cortical neurons elicited a large current with an average reversal potential of -65 mV, presumably mediated through a GABAA-activated chloride conductance. Application of varying concentrations of GABA generated a concentration/response relationship that could be well-fitted by a conventional sigmoidal curve, with an EC50 of 25.5 microM and a Hill coefficient of 1.0 4. Coapplication of the benzodiazepine clonazepam and 10 microM GABA augmented the amplitude of the GABA response. The concentration dependence of this benzodiazepine augmentation could be best-fitted by an equation assuming that the benzodiazepine interacted with two distinct binding sites, with differing potencies. The high-potency site had an EC50 of 0.06 nM and maximally contributed 38.5% augmentation to the total effect of clonazepam. The lower potency site had an EC50 of 16.4 nM, and contributed 66.1% maximal augmentation to the overall effect of clonazepam. These data derived from adult human temporal cortical neurons were very similar to our findings in adult rat sensory cortical neurons. 5. The effects of equimolar concentrations (100 nM) of clonazepam, a BZ1 and BZ2 agonist, and zolpidem, a selective BZ1 agonist, on acutely isolated human temporal cortical neurons were also investigated. Zolpidem and clonazepam were equally effective (71.5 vs. 65.0%, respectively) in potentiating GABA responses elicited by application of 10 microM GABA. This suggests that many of the functional benzodiazepine receptors in these neurons were of the BZ1 variety. 6. GABAergic synaptic inhibition was also studied with the use of patch-clamp recordings in slices of human temporal cortex. Extracellular stimulation at the white matter/gray matter border elicited compound synaptic events in layer II-V cortical neurons. These events usually consisted of an early excitatory postsynaptic potential (EPSP) and a late multiphasic inhibitory postsynaptic potential (IPSP). Application of either clonazepam or zolpidem (both at 100 nM) to the slice during extracellular stimulation reversibly augmented the late compound IPSP. 7. Spontaneous IPSPs were also recorded in approximately 50% of human temporal cortical neurons. These events did not have a preceding EPSP and were usually monopolar, with a single exponential rise and decay. This supported the idea that these events were triggered by spontaneous activity of GABAergic interneurons. Bath application of either clonazepam or zolpidem (both at 100nM) to the slice during ongoing spontaneous IPSP activity increased the amplitude and lengthened the time constant of decay of these events. 8. To our knowledge, this is one of the first detailed characterizations of the functional properties of GABAA-mediated inhibition in human cortical neurons using patch-clamp recordings in both isolated cells and slices of resected temporal cortex. Isolated pyramidal neurons exhibited GABAA-mediated currents that were comparable in many aspects with GABA currents recorded from adult rat cortical neurons, including similar GABA concentration/response curves, and similar two differing potency site effects for clonazepam augmentation of GABA currents. In addition, evoked and spontaneous IPSPs recorded in human cortical neurons appeared similar to IPSPs in rat cortical


1997 ◽  
Vol 78 (2) ◽  
pp. 1184-1187 ◽  
Author(s):  
John M. Power ◽  
Lucien T. Thompson ◽  
James R. Moyer ◽  
John F. Disterhoft

Power, John M., Lucien T. Thompson, James R. Moyer, Jr., and John F. Disterhoft. Enhanced synaptic transmission in CA1 hippocampus after eyeblink conditioning. J. Neurophysiol. 78: 1184–1187, 1997. CA1 field potentials evoked by Schaffer collateral stimulation of hippocampal slices from trace-conditioned rabbits were compared with those from naive and pseudoconditioned controls. Conditioned rabbits received 80 trace conditioning trials daily until reaching a criterion of 80% conditioned responses in a session. Hippocampal slices were prepared 1 or 24 h after reaching criterion (for trace-conditioned animals) or after a final unpaired stimulus session (for pseudoconditioned animals); naive animals were untrained. Both somatic and dendritic field potentials were recorded in response to various stimulus durations. Recording and data reduction were performed blind to the conditioning state of the rabbit. The excitatory postsynaptic potential slope was greater in slices prepared from trace-conditioned animals killed 1 h after conditioning than in naive and pseudoconditioned controls (repeated-measures analysis of variance, F = 4.250, P < 0.05). Associative learning specifically enhanced synaptic transmission between CA3 and CA1 immediately after training. This effect was not evident in the population field potential measured 24 h later.


2002 ◽  
Vol 88 (6) ◽  
pp. 2963-2978 ◽  
Author(s):  
Cyrille Vaillend ◽  
Susanne E. Mason ◽  
Matthew F. Cuttle ◽  
Bradley E. Alger

Extra- and intracellular records were made from rat acute hippocampal slices to examine the effects of partial inhibition of Na+-K+-ATPases (Na+-K+pumps) on neuronal hyperexcitability. Bath application of the low-affinity cardiac glycoside, dihydroouabain (DHO), reversibly induced interictal-like epileptiform bursting activity in the CA1 region. Burst-firing was correlated with inhibition of the pumps, which was assayed by changes in [K+]ouptake rates measured with K+-ion-sensitive microelectrodes. Large increases in resting [K+]odid not occur. DHO induced a transient depolarization (5–6 mV) followed by a long-lasting hyperpolarization (∼6 mV) in CA1 pyramidal neurons, which was accompanied by a 30% decrease in resting input resistance. Block of an electrogenic pump current could explain the depolarization but not the hyperpolarization of the membrane. Increasing [K+]ofrom 3 to 5.5 mM minimized these transient shifts in passive membrane properties without preventing DHO-induced hyperexcitability. DHO decreased synaptic transmission, but increased the coupling between excitatory postsynaptic potentials and spike firing (E-S coupling). Monosynaptic inhibitory postsynaptic potential (IPSP) amplitudes declined to ∼25% of control at the peak of bursting activity; however, miniature TTX-resistant inhibitory postsynaptic current amplitudes were unaffected. DHO also reduced the initial slope of the intracellular excitatory postsynaptic potential (EPSP) to ∼40% of control. The conductances of pharmacologically isolated IPSPs and EPSPs in high-Ca/high-Mg-containing saline were also reduced by DHO by ∼50%. The extracellular fiber volley amplitude was reduced by 15–20%, suggesting that the decrease in neurotransmission was partly due to a reduction in presynaptic fiber excitability. DHO enhanced a late depolarizing potential that was superimposed on the EPSP and could obscure it. This potential was not blocked by antagonists of NMDA receptors, and blockade of NMDA, mGlu, or GABAAreceptors did not affect burst firing. The late depolarizing component enabled the pyramidal cells to reach spike threshold without changing the actual voltage threshold for firing. We conclude that reduced GABAergic potentials and enhanced E-S coupling are the primary mechanisms underlying the hyperexcitability associated with impaired Na+-K+pump activity.


2002 ◽  
Vol 96 (3) ◽  
pp. 681-687 ◽  
Author(s):  
Rika Sasaki ◽  
Koki Hirota ◽  
Sheldon H. Roth ◽  
Mitsuaki Yamazaki

Background Magnesium ion (Mg2+) is involved in important processes as modulation of ion channels, receptors, neurotransmitter release, and cell excitability in the central nervous system. Although extracellular Mg2+ concentration ([Mg2+]o) can be altered during general anesthesia, there has been no evidence for [Mg2+]o-dependent modification of anesthetic actions on neural excitability in central nervous system preparations. The purpose of current study was to determine whether the effects of volatile anesthetics are [Mg2+]o-dependent in mammalian central nervous system. Methods Extracellular electrophysiologic recordings from CA1 neurons in rat hippocampal slices were used to investigate the effects of [Mg2+]o and anesthetics on population spike amplitude and excitatory postsynaptic potential slope. Results The depression of population spike amplitudes and excitatory postsynaptic potential slopes by volatile anesthetics were significantly dependent on [Mg2+]o. The effects were attenuated in the presence of a constant [Mg2+]o/extracellular Ca2+ concentration ratio. However, neither N-methyl-d-aspartate receptor antagonists nor a non-N-methyl-d-aspartate receptor antagonist altered the [Mg2+]o-dependent anesthetic-induced depression of population spikes. Volatile anesthetics produced minimal effects on input-output (excitatory postsynaptic potential-population spike) relations or the threshold for population spike generation. The effects were not modified by changes in [Mg2+]o. In addition, the population spike amplitudes, elicited via antidromic (nonsynaptic) stimulation, were not influenced by [Mg2+]o in the presence of volatile anesthetics. Conclusions These results provide support that alteration of [Mg2+]o modifies the actions of volatile anesthetics on synaptic transmission and that the effects could be, at least in part, a result of presynaptic Ca2+ channel-related mechanisms.


1993 ◽  
Vol 265 (2) ◽  
pp. R269-R276 ◽  
Author(s):  
S. W. Mifflin

The following study was undertaken to examine the integration of laryngeal afferent inputs within the nucleus of the solitary tract (NTS), the primary site of termination of laryngeal afferent fibers. Intracellular recordings were obtained from 63 cells that responded to electrical stimulation of the superior laryngeal nerve (SLN) with an excitatory postsynaptic potential (EPSP; n = 49), an excitatory-inhibitory postsynaptic potential (EPSP-IPSP) sequence (n = 13), or an IPSP (n = 1). Mechanical stimulation of laryngeal mechanoreceptors revealed a variety of response patterns (e.g., slowly and rapidly adapting depolarizations or hyperpolarizations). Two types of response to increasing SLN stimulus frequency were observed. In 11 cells SLN-evoked EPSP amplitude at 10 Hz was only 47 +/- 4% of the amplitude at 1 Hz, while in 6 cells EPSP amplitude at 10 Hz was virtually identical (93 +/- 3%) to that at 1 Hz. Time-dependent inhibitory interactions occurred between SLN inputs to NTS neurons at intervals between 50 and 400 ms and in the absence of any change in membrane potential. NTS neuronal responses to brief activation of laryngeal mechanoreceptors correspond well to discharge patterns described for individual laryngeal mechanoreceptors. Frequency-dependent filtering and time-dependent inhibitory interactions might modify NTS neuronal responses during more intense stimulation of laryngeal afferents.


1988 ◽  
Vol 15 (1) ◽  
pp. 46-47 ◽  
Author(s):  
Paul R. Solomon ◽  
Scott Cooper ◽  
Dean Pomerleau

A series of computer simulations of the neuronal resting and action potentials are described. These programs are designed to allow the user to observe the movement of ions across a neuronal membrane during: (a) an action potential, (b) a subthreshold excitatory postsynaptic potential (EPSP), (c) an inhibitory postsynaptic potential, and (d) a suprathreshold EPSP in the presence of the sodium channel blocker tetrodotoxin (TTX).


Sign in / Sign up

Export Citation Format

Share Document