Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements

1995 ◽  
Vol 74 (5) ◽  
pp. 2051-2064 ◽  
Author(s):  
C. I. De Zeeuw ◽  
D. R. Wylie ◽  
J. S. Stahl ◽  
J. I. Simpson

1. Purkinje cells in the rabbit flocculus that respond best to rotation about the vertical axis (VA) project to flocculus-receiving neurons (FRNs) in the medial vestibular nucleus. During sinusoidal rotation, the phase of FRNs leads that of medial vestibular nucleus neurons not receiving floccular inhibition (non-FRNs). If the FRN phase lead is produced by signals from the flocculus, then the Purkinje cells should functionally lead the FRNs. In the present study we recorded from VA Purkinje cells in the flocculi of awake, pigmented rabbits during compensatory eye movements to determine whether Purkinje cells have the appropriate firing rate phases to explain the phase-leading characteristics of the FRNs. 2. Awake rabbits were sinusoidally rotated about the VA in the light and the dark at 0.05-0.8 Hz with different amplitudes. The phase of the simple spike (SS) modulation in reference to eye and head position was calculated by determining the eye position sensitivity and the eye velocity sensitivity using multivariate linear regression and Fourier analysis. The phase of the SS modulation in reference to head position was compared with the phase of the FRN modulation, which was obtained in prior experiments with the same stimulus paradigms. 3. The SS activity of nearly all of the 88 recorded floccular VA Purkinje cells increased with contralateral head rotation. During rotation in the light, the SS modulation showed a phase lead in reference to contralateral head position that increased with increasing frequency (median 56.9 degrees at 0.05 Hz, 78.6 degrees at 0.8 Hz). The SS modulation led the FRN modulation significantly at all frequencies. The difference of medians was greatest (19.2 degrees) at 0.05 Hz and progressively decreased with increasing frequency (all Ps < 0.005, Wilcoxon rank-sum test). 4. During rotation in the dark, the SS modulation had a greater phase lead in reference to head position than in the light (median 110.3 degrees at 0.05 Hz, 86.6 degrees at 0.8 Hz). The phase of the SS modulation in the dark led that of the FRNs significantly at all frequencies (difference of medians varied from 24.2 degrees at 0.05 Hz to 9.1 degrees at 0.8 Hz; all Ps < 0.005). 5. The complex spike (CS) activity of all VA Purkinje cells increased with ipsilateral head rotation in the light. Fourier analysis of the cross-correlogram of the CS and SS activity showed that the phase lag of the CS modulation in reference to the SS modulation at 0.05 Hz in the light was not significantly different from that at 0.8 Hz (median 199.7 degrees at 0.05 Hz, 198.3 degrees at 0.8 Hz), even though the phases of the SS modulation at these two frequencies were significantly different (P < 0.001). These data indicate that the average temporal reciprocity between CS and SS modulation is fixed across the range of frequencies used in the present study. 6. The CS activity of most Purkinje cells did not modulate during rotation in the dark. Of 124 cases (each case consisting of the CS and SS data of a VA Purkinje cell obtained at 1 particular frequency) examined over the frequency range of 0.05-0.8 Hz, 17 cases (14%) showed CS modulation. In the majority (15 of 17) of these cases, the CS activity increased with contralateral head rotation; these modulations occurred predominantly at the higher stimulus velocities. 7. On the basis of the finding that FRNs of the medial vestibular nucleus lead non-FRNs, we predicted that floccular VA Purkinje cells would in turn lead FRNs. This prediction is confirmed in the present study. The data are therefore consistent with the hypothesis that the phase-leading characteristics of FRN modulation could come about by summation of VA Purkinje cell activity with that of cells whose phase would otherwise be identical to that of non-FRNs. The floccular SS output appears to increase the phase lead of the net preoculomotor signal, which is in part composed of the FRN and non-FRN signals.

1995 ◽  
Vol 73 (4) ◽  
pp. 1396-1413 ◽  
Author(s):  
J. S. Stahl ◽  
J. I. Simpson

1. We recorded single vestibular nucleus neurons shown by electrical stimulation to receive floccular inhibition [flocculus receiving neurons (FRNs)] and/or to project toward midbrain motoneuronal pools [midbrain projecting neurons (MPNs)] in awake, head-fixed rabbits during compensatory eye movements. Stimuli included head rotation in the light, head rotation in the dark, and rotation of an optokinetic drum about the animal. We employed sinusoidal and triangular position profiles in the 0.05- to 0.8-Hz frequency band. We also examined transient responses to step changes in eye position. 2. We found identified vestibular nucleus cells (i.e., FRN/non-MPNs, FRN/MPNs, and non-FRN/MPNs) in the parvocellular and magnocellular portions of the medial vestibular nucleus, at the rostrocaudal level of the dorsal acoustic stria. 3. All identified vestibular nucleus neurons were excited during ipsilateral (relative to side of recording) head rotation and contralateral eye rotation. 4. The neuronal firing rates could be related to eye position and its time derivatives, and that relationship could be approximated by a two-pole, one-zero linear transfer function. As with abducens neurons, a more detailed approximation requires inclusion of two nonlinearities-a hysteresis and a variable sensitivity term that increases as eye movement amplitude decreases. 5. When the vestibuloocular reflex is suppressed by a conflicting full-field visual stimulus [visual vestibular conflict condition (VVC)], vestibular nucleus neuron modulation is largely suppressed. The remaining modulation is motoric in nature, because it can be related to the residual eye movements. Cells with "sensory vestibular signals," i.e., cells whose modulation during VVC correlates better with head rotation than eye movement, were not encountered. 6. We examined the dependence of firing rate parameters on stimulus modality. All neurons exhibited increased phase lead with respect to abducens nucleus neurons during stimuli involving head rotation. This finding could indicate that vestibular-derived inputs are inhomogeneously distributed on premotor neurons and that the studied premotor population receives a stronger vestibular input than another premotor group, not recorded in the current experiments. 7. FRNs and non-FRNs were similar in their qualitative response to the fast phases, the applicability of the two-pole, one-zero transfer function, hysteresis, and the amplitude nonlinearity. 8. FRNs differed from non-FRNs in having a phase advanced firing rate at all stimulus frequencies during visual and vestibular stimuli. The phase difference suggests that one role of the rabbit flocculus is to regulate phase of the net premotor signal.


1992 ◽  
Vol 68 (1) ◽  
pp. 319-332 ◽  
Author(s):  
J. L. McFarland ◽  
A. F. Fuchs

1. Monkeys were trained to perform a variety of horizontal eye tracking tasks designed to reveal possible eye movement and vestibular sensitivities of neurons in the medulla. To test eye movement sensitivity, we required stationary monkeys to track a small spot that moved horizontally. To test vestibular sensitivity, we rotated the monkeys about a vertical axis and required them to fixate a target rotating with them to suppress the vestibuloocular reflex (VOR). 2. All of the 100 units described in our study were recorded from regions of the medulla that were prominently labeled after injections of horseradish peroxidase into the abducens nucleus. These regions include the nucleus prepositus hypoglossi (NPH), the medial vestibular nucleus (MVN), and their common border (the “marginal zone”). We report here the activities of three different types of neurons recorded in these regions. 3. Two types responded only during eye movements per se. Their firing rates increased with eye position; 86% had ipsilateral “on” directions. Almost three quarters (73%) of these medullary neurons exhibited a burst-tonic discharge pattern that is qualitatively similar to that of abducens motoneurons. There were, however, quantitative differences in that these medullary burst-position neurons were less sensitive to eye position than were abducens motoneurons and often did not pause completely for saccades in the off direction. The burst of medullary burst position neurons preceded the saccade by an average of 7.6 +/- 1.7 (SD) ms and, on average, lasted the duration of the saccade. The number of spikes in the burst was well correlated with saccade size. The second type of eye movement neuron displayed either no discernible burst or an inconsistent one for on-direction saccades and will be referred to as medullary position neurons. Neither the burst-position nor the position neurons responded when the animals suppressed the VOR; hence, they displayed no vestibular sensitivity. 4. The third type of neuron was sensitive to both eye movement and vestibular stimulation. These neurons increased their firing rates during horizontal head rotation and smooth pursuit eye movements in the same direction; most (76%) preferred ipsilateral head and eye movements. Their firing rates were approximately in phase with eye velocity during sinusoidal smooth pursuit and with head velocity during VOR suppression; on average, their eye velocity sensitivity was 50% greater than their vestibular sensitivity. Sixty percent of these eye/head velocity cells were also sensitive to eye position. 5. The NPH/MVN region contains many neurons that could provide an eye position signal to abducens neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1979 ◽  
Vol 42 (5) ◽  
pp. 1282-1296 ◽  
Author(s):  
V. Honrubia ◽  
D. B. Reingold ◽  
C. G. Lau ◽  
P. H. Ward

1. The firing rates of action potentials of abducens nerve single fibers were recorded in the cat's orbit during a variety of vestibular and optokinetic stimulations. 2. Comparison was made of the neural firing rates associated with agonist and antagonist responses during slow and fast components of vestibular and optokinetic nystagmus. It was found that the relationship between the motoneuron firing rates and the eye motion was independent of the reflex with which they were associated--vestibular or optokinetic, or the type of response--agonist or antagonist. No neurons were observed that responded only during the fast or only during the slow nystagmus phase. Motoneuron firing rates were proportional to both velocity and position of the eye in a ratio of 1 (spikes/s)/(deg/s) to 7.2 (spikes/s)/deg. The behavior of the motoneurons was compatible with the hypothesis that thier firing rates are sufficient to overcome both elastic and viscous forces by which the muscles and ligaments hold the eye in the orbit. 3. For low-frequency head rotations, eye displacement and neural responses showed a small phase angle difference. At higher frequencies, however, while the eyes maintained a fixed relationship to the head rotation, the neural responses showed an increasing phase lead. One component of this phase lead compensated for the phase lag introduced by the orbital mechanics. The other was modeled as a constant delay of approximately 70 ms, which may be accounted for by neuromuscular transmission and transduction.


1990 ◽  
Vol 63 (4) ◽  
pp. 902-917 ◽  
Author(s):  
Y. Iwamoto ◽  
T. Kitama ◽  
K. Yoshida

1. The firing characteristics and projection patterns of secondary vestibular nucleus neurons involved in the vertical vestibuloocular pathways were investigated in alert cats. Single-unit recordings were made in the medial longitudinal fasciculus (MLF) near the trochlear nucleus from axons that were monosynaptically activated after electrical stimulation of the vestibular nerve. In a total of 253 identified secondary neurons, 225 discharged in relation to vertical eye movements; 189 of these increased their firing rate for downward eye movements and 36 for upward movements. The activity of the remaining 28 axons was not related to eye movements when the head was still. 2. Virtually all of the secondary neurons with downward on-direction displayed tonic activity that was primarily related to steady eye position during fixation (DPV neurons). The slope of the relationship between firing rate and vertical eye position ranged from 1.2 to 9.1 (spikes/s)/deg with a mean of 3.2 (spikes/s)/deg. The regularity of firing was quantified by calculating the coefficient of variation (CV) of interspike intervals. A comparison of the CV in the population units indicated that DPV neurons could be classified as either regular or irregular neurons. There was a tendency for regular neurons to have higher firing rates and higher correlation coefficients for the rate-position relationships than irregular neurons. 3. During pitch rotation in the light, all the DPV neurons tested increased their firing rate with upward head rotation. Both the phase and the amplitude of the response indicated that DPV neurons discharged not only in relation to eye position but also in relation to head velocity, suggesting that they received monosynaptic input from the posterior semicircular canal. The gain and phase lag of the response relative to head velocity were measured at 0.5 Hz. The range of the gain was 1.1-5.1 (spikes/s)/(deg/s), and that of the phase lag was 18.3-62.4 degrees. There was a tendency for irregular DPV neurons to have a larger gain and smaller phase lag than regular DPV neurons. 4. Ascending and descending projection pathways were determined for 147 DPV axons. Of these, 69 ascended in the contralateral MLF with respect to their soma (crossed-DPV axons), and 78 in the ipsilateral MLF (uncrossed-DPV axons), as revealed by their monosynaptic activation from the contralateral or ipsilateral vestibular nerve. Stimulation of the caudal MLF at the level of the obex evoked direct responses caused by antidromic activation of descending collaterals in approximately 70% (49/69) of the crossed-DPV axons.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 76 (3) ◽  
pp. 1759-1774 ◽  
Author(s):  
G. Cheron ◽  
M. Escudero ◽  
E. Godaux

1. The aim of this study was to characterize the signals transmitted by neurons of the medial vestibular nucleus (MVN) to the middle zone of the flocculus in alert cats. 2. Bipolar stimulating electrodes were implanted into the middle zone of each flocculus, because this zone is known to be involved in the control of horizontal eye movements. Correct implantation of the stimulating electrodes was ensured by 1) recording of Purkinje cells whose activity was related to horizontal eye movements and 2) elicitation of slow abduction of the ipsilateral eye upon electrical stimulation. 3. The rostral two-thirds of the MVN were investigated by microelectrodes during stimulation of both flocculi. Antidromically activated neurons were found only in the central part of the explored area. Forty-four units were activated from the contralateral, eight from the ipsilateral flocculus. Neurons could never be activated from both flocculi. 4. Neurons included in this study were MVN neurons that had 1) to be antidromically activated from one flocculus and 2) to modulate their firing rate during the horizontal vestibuloocular reflex (VOR) elicited by sinusoidal stimulation (0.1 Hz; 10, 20, 30 or 40 degrees). The 39 neurons matching both criteria were classified in 2 groups: 22 neurons changed their firing rate during spontaneous horizontal eye movements (EM-neurons), 17 modulated their activity only during head rotation and were labeled vestibular-only neurons (VO-neurons). 5. Sufficient data were obtained from 13 EM-neurons to allow a quantitative analysis. Among those, 12 were activated from the contralateral and 1 from the ipsilateral flocculus. Their sensitivity to horizontal eye position during intersaccadic fixation was 3.54 +/- 2.75 (SD) spikes.s-1/deg. Eight EM-neurons behaved as type I neurons, five as type II neurons. During the slow phases of the VOR, all of these neurons combined some head-velocity sensitivity (1.50 +/- 0.43 spikes.s-1/deg.s-1) with some horizontal eye-position sensitivity (3.61 +/- 2.45 spikes.s-1/deg). Additionally, seven of these neurons presented a sensitivity to eye velocity (1.34 +/- 0.55 spikes.s-1/deg.s-1). The phase difference between the modulation of firing rate and eye position varied substantially between neurons. The observed phase lead with respect to eye position ranged from 2 to 110 degrees (41.9 +/- 31.8 degrees). 6. Sufficient data were obtained from 10 VO-neurons to allow a quantitative analysis. Among those, nine were activated from the contralateral and one from the ipsilateral flocculus. All of these neurons behaved as type I neurons. The sensitivity to head velocity was 1.64 +/- 1.07 spikes.s-1/deg.s-1. The phase lead of the modulation of spike activity with respect to head velocity ranged from 4.5 to 30.5 degrees (16.4 +/- 8.9 degrees). 7. We conclude that the MVN provides the horizontal zone of the flocculus (with a strong contralateral preference) with information about head velocity (through VO-neurons and EM-neurons) and about eye velocity and position (through EM-neurons).


2003 ◽  
Vol 90 (2) ◽  
pp. 739-754 ◽  
Author(s):  
Pierre A. Sylvestre ◽  
Julia T. L. Choi ◽  
Kathleen E. Cullen

Burst-tonic (BT) neurons in the prepositus hypoglossi and adjacent medial vestibular nuclei are important elements of the neural integrator for horizontal eye movements. While the metrics of their discharges have been studied during conjugate saccades (where the eyes rotate with similar dynamics), their role during disjunctive saccades (where the eyes rotate with markedly different dynamics to account for differences in depths between saccadic targets) remains completely unexplored. In this report, we provide the first detailed quantification of the discharge dynamics of BT neurons during conjugate saccades, disjunctive saccades, and disjunctive fixation. We show that these neurons carry both significant eye position and eye velocity-related signals during conjugate saccades as well as smaller, yet important, “slide” and eye acceleration terms. Further, we demonstrate that a majority of BT neurons, during disjunctive fixation and disjunctive saccades, preferentially encode the position and the velocity of a single eye; only few BT neurons equally encode the movements of both eyes (i.e., have conjugate sensitivities). We argue that BT neurons in the nucleus prepositus hypoglossi/medial vestibular nucleus play an important role in the generation of unequal eye movements during disjunctive saccades, and carry appropriate information to shape the saccadic discharges of the abducens nucleus neurons to which they project.


1980 ◽  
Vol 43 (6) ◽  
pp. 1725-1745 ◽  
Author(s):  
S. G. Lisberger ◽  
F. A. Miles

1. Fifteen hundred and thirty cells were recorded in the medial vestibular nucleus (MVN) of alert monkeys whose vestibuloocular reflex (VOR) had been adapted to one of two kinds of spectacles. The “high-gain” sample was recorded from monkeys that had worn 2.0 x telescopic spectacles; the gain of the VOR in the dark (eye velocity divided by head velocity) was greater than 1.5. The “low-gain” sample was recorded from monkeys that had worn goggles providing a visual field that was fixed with respect to the freely turning head; the gain of the VOR was less than 0.4. 2. Cells showing modulation of firing rate related to imposed head velocity were grouped into four categories: pure vestibular (10), vestibular-plus-saccade (10), vestibular-plus-position (10), and vestibular-plus-head/body (24). Sensitivity to head velocity was measured from averaged responses to sinusoidal, 0.4-Hz whole-body oscillation in the horizontal plane. Almost all cells (98%) having increased firing during ipsilateral head rotation received inputs from the horizontal semicircular canals. Conversely, 82% of cells having increased firing during contralateral head rotation received inputs from the vertical canals. 3. There were no statistically significant differences in resting discharge rate, phase shift, or sensitivity to head velocity between the high- and low-gain samples of any of the cell types. Nonetheless, there was a consistent tendency, evident in all the functionally defined cell groups, for the sensitivity to be about 20% greater in the high-gain samples. However, this difference is small by comparison with the fourfold difference in VOR gain. 4. Detailed scrutiny of the response properties of individual cells suggested that the small differences in sensitivity reflect small changes distributed throughout the population, rather than large and potentially significant changes within a small sub-population. 5. Our data indicate that large, adaptive changes in the gain of the VOR are accompanied by only minor changes in the vestibular sensitivity and no changes in the phase shift or resting discharge rates of cells in the MVN. It remains possible that large changes in vestibular sensitivity occurred in cells we did not sample or in subgroups we could not identify. We argue that this is unlikely and that the major changes underlying VOR plasticity occur after the first central synapse in the VOR pathways.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tianwen Chen ◽  
Jun Huang ◽  
Yue Yu ◽  
Xuehui Tang ◽  
Chunming Zhang ◽  
...  

Vestibular evoked myogenic potentials (VEMP) have been used to assess otolith function in clinics worldwide. However, there are accumulating evidence suggesting that the clinically used sound stimuli activate not only the otolith afferents, but also the canal afferents, indicating canal contributions to the VEMPs. To better understand the neural mechanisms underlying the VEMPs and develop discriminative VEMP protocols, we further examined sound-evoked responses of the vestibular nucleus neurons and the abducens neurons, which have the interneurons and motoneurons of the vestibulo-ocular reflex (VOR) pathways. Air-conducted clicks (50–80 dB SL re ABR threshold, 0.1 ms duration) or tone bursts (60–80 dB SL, 125–4,000 Hz, 8 ms plateau, 1 ms rise/fall) were delivered to the ears of Sprague-Dawley or Long-Evans rats. Among 425 vestibular nucleus neurons recorded in anesthetized rats and 18 abducens neurons recorded in awake rats, sound activated 35.9% of the vestibular neurons that increased discharge rates for ipsilateral head rotation (Type I neuron), 15.7% of the vestibular neurons that increased discharge rates for contralateral head rotation (Type II neuron), 57.2% of the vestibular neurons that did not change discharge rates during head rotation (non-canal neuron), and 38.9% of the abducens neurons. Sound sensitive vestibular nucleus neurons and abducens neurons exhibited characteristic tuning curves that reflected convergence of canal and otolith inputs in the VOR pathways. Tone bursts also evoked well-defined eye movements that increased with tone intensity and duration and exhibited peak frequency of ∼1,500 Hz. For the left eye, tone bursts evoked upward/rightward eye movements for ipsilateral stimulation, and downward/leftward eye movements for contralateral stimulation. These results demonstrate that sound stimulation results in activation of the canal and otolith VOR pathways that can be measured by eye tracking devices to develop discriminative tests of vestibular function in animal models and in humans.


1993 ◽  
Vol 70 (2) ◽  
pp. 844-856 ◽  
Author(s):  
K. E. Cullen ◽  
C. Chen-Huang ◽  
R. A. McCrea

1. The single-unit activity of neurons in the vestibular nucleus, the prepositus nucleus, and the abducens nucleus, whose activity was primarily related to horizontal eye movements, was recorded in alert squirrel monkeys that were trained to track a small visual target by generating smooth pursuit eye movements and to cancel their horizontal vestibuloocular reflex (VOR) by fixating a head stationary target. 2. The spiking behavior of each cell was recorded during 1) spontaneous eye movements, 2) horizontal smooth pursuit of a target that was moved sinusoidally +/- 20 degrees/s at 0.5 Hz, 3) horizontal VOR evoked by 0.5-Hz sinusoidal turntable rotations +/- 40 degrees/s (VORs), and 4) voluntary cancellation of the VOR by fixation of a head-stationary target during 0.5-Hz sinusoidal turntable rotation at +/- 40 degrees/s (VORCs). The responses of most (28/42) of the units were recorded during unpredictable 100-ms steps in head acceleration (400 degrees/s2) that were generated while the monkey was fixating a target light. The acceleration steps were generated either when the monkey was stationary or when the turntable was already rotating (VORt trials), and the monkey was canceling its VOR (VORCt trials). 3. The firing behavior of all 12 of the abducens neurons recorded was closely related to horizontal eye position and eye velocity during all of the behavioral paradigms used, although there was a small but significant increase in the eye position sensitivity of many of these units when the eye was moving (smooth pursuit) versus when the eye was stationary (fixation). 4. Many neurons in the prepositus nucleus and the medial vestibular nucleus (n = 15) were similar to abducens neurons, in that their firing rate was related primarily to horizontal eye position and eye velocity, regardless of the behavioral paradigm used. These cells were, on average, more sensitive to eye position and smooth pursuit eye velocity than were abducens neurons. 5. The firing rate of 15 other neurons in the prepositus and medial vestibular nucleus was related primarily to horizontal smooth pursuit eye movements. The tonic firing rate of all of these smooth pursuit (SP) cells was related to horizontal eye position, and the majority generated bursts of spikes during saccades in all directions but their off direction. Six of the SP neurons fired in phase with ipsilateral eye movements, whereas the remaining nine were sensitive to eye movements in the opposite direction.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document