Errors in the control of joint rotations associated with inaccuracies in overarm throws

1996 ◽  
Vol 75 (3) ◽  
pp. 1013-1025 ◽  
Author(s):  
J. Hore ◽  
S. Watts ◽  
D. Tweed

1. Accurate overarm throwing requires precise control of joint rotations so that the ball is released at the appropriate time on the appropriate hand trajectory. Inaccuracy in throws, in turn, must result from errors in the control of joint rotations. But do high and low throws result from disorders in the joint rotations that produce the hand trajectory or in those that cause ball release? Are they due to error at a particular joint or to accumulation of errors across a number of joints? The objective was to answer these questions and thereby to gain insight into the CNS control of joint rotations in a skilled arm movement task. 2. Ten subjects--male, right-handed recreational ball players, all accurate throwers--sat with a fixed trunk and threw tennis balls at a 9 x 9 grid of 6-cm target squares 1.5 or 3 m away. Rotations of five arm segments in three dimensions were measured at 1,000 Hz with the magnetic-field search-coil technique. Hand trajectory (translation) was computed from these rotations. 3. The cause of ball high-low inaccuracy was investigated by determining its relation with hand kinematic parameters that could potentially affect it. No statistically significant relation was found between height of ball impact on the target and height of the hand trajectory. In contrast, statistically significant relations appeared between height of ball impact on the target and both hand trajectory length at ball release (for 8 of 10 subjects) and finger and hand orientation in space at ball release (for all 10 subjects). 4. Three hypotheses were proposed to explain the variable finger and hand orientations in space at ball release, i.e., that they resulted from errors in velocity of rotation at one or more proximal joints (wrist, elbow, shoulder), timing of onset of rotation at one or more proximal joints, or timing of ball release (due to incorrect velocity or timing of onset of finger opening). All three mechanisms could result in inappropriate finger and hand orientations in space at ball release, but the pattern of joint space trajectories would be different in each case. 5. High and low throws did not follow the joint space paths predicted by the first two hypotheses. Instead, as predicted by the third hypothesis, a separation of traces occurred when finger extension was plotted against wrist flexion or against elbow extension, e.g., for a given amplitude of wrist flexion, finger extension was large for the high throws and small for the low throws. 6. In agreement, when all throws were considered, a statistically significant (P < 0.005) relation was found between ball impact height on the target and the amplitude of finger extension, for a fixed amplitude of wrist flexion (10 subjects), and for a fixed amplitude of elbow extension (8 subjects). Only two subjects showed a statistically significant relation between ball impact height and the amplitude of wrist flexion, for a fixed amplitude of elbow extension. 7. The separation of finger extension-wrist flexion traces in joint space for high and low throws was due to a difference in the timing of onset of finger rotation with respect to the wrist rather than to an inappropriate velocity of the finger (or the wrist). 8. As expected, all 10 subjects showed statistically significant relations between the time of onset of finger extension and both finger orientation in space at ball release and height of ball impact on the target. 9. It is concluded that in fast arm-only throws made by male recreational ball players, high and low throws do not primarily result from variability in the height of the hand trajectory or from variability in the amplitude of one or more proximal joints due to errors in the velocity or timing of onset of these joint rotations. Instead, in most cases, they result from inappropriate timing of onset of rotation of the fingers with respect to the rotations of the other joints and thus to inappropriate timing of ball release. These findings emphasize the im

1996 ◽  
Vol 76 (6) ◽  
pp. 3693-3704 ◽  
Author(s):  
J. Hore ◽  
S. Watts ◽  
D. Tweed ◽  
B. Miller

1. Overarm throws made with the nondominant arm are usually less accurate than those made with the dominant arm. The objective was to determine the errors in the joint rotations associated with this inaccuracy, and thereby to gain insight into the neural mechanisms that contribute to skill in overarm throwing. 2. Overarm throws from both left and right arms were recorded on different occasions as six right-handed subjects sat with a fixed trunk and threw 150 tennis balls at about the same speed at a 6-cm square on a target grid 3 m away. Joint rotations at the shoulder, elbow, wrist, and finger, and arm translations, were computed from recordings of arm segment orientations made with the magnetic-field search-coil technique. 3. All subjects threw less accurately in this task with the left (nondominant) arm. For throws made with the left arm, the height of ball impact on the target grid was related to hand trajectory length and to hand orientation in space at ball release, but not to hand trajectory height. 4. Two hypotheses were proposed to explain the decreased ball accuracy in the high-low direction during throwing with the nondominant arm: that it was caused by increased variability in the velocity or timing of onset of rotations at proximal joints (which determine the path of the hand through space) or increased variability in the velocity or timing of onset of finger extension (which determine the moment of ball release). 5. A prediction of the first hypothesis was that proximal joint rotations should be more variable in throws with the left arm. This was the case for the majority of proximal joint rotations in the six subjects when variability was examined in joint space. However, some proximal joint rotations were more variable in the right arm. 6. The first hypothesis was directly tested by determining whether hand angular position in space (which represents the sum of all proximal joint rotations) was related to ball impact height on the target grid at a fixed translational position in the throw. No relation was found between these variables for throws with the left arm in four subjects, whereas a weak relation was found for two subjects. It was concluded that, considering all subjects, the first hypothesis could not explain the results. 7. In contrast, in agreement with the second hypothesis, a strong relation (P < 0.001) was found in all subjects between ball impact height on the target grid and time of ball release for throws with the left arm, and with time of onset of finger extension. 8. Across all six subjects the timing precision (windows) for 95% of the throws was (for ball release) right arm, 9.3 ms; left arm, 22.5 ms; (for onset of finger extension) right arm, 13.7 ms; left arm, 26.7 ms. 9. Timing of onset of finger extension was no less accurate than timing of onset of other joint rotations for both left and right arms. However, simulations of throws showed that, for the same error in timing, finger extension had twice as large an effect on ball direction as any other joint rotation. Timing errors at the fingers have a greater effect than errors at other joints because finger errors are scaled by the higher angular velocity of the hand in space rather than by the smaller angular velocities of the individual joints. 10. It is concluded that although rotations were in general more variable at both proximal and distal joints of the nondominant (left) arm, the major cause of its decreased throwing accuracy was increased variability at the distal joints, i.e., in the timing of onset of finger extension. This may be due to a lack of precision in the commands from the right hemisphere to the left fingers in right-handed throwers.


Author(s):  
Zachary Bons ◽  
Taylor Dickinson ◽  
Ryan Clark ◽  
Kari Beardsley ◽  
Steven Charles

Abstract Most motion capture measurements suffer from soft-tissue artifacts (STA). Especially affected are rotations about the long axis of a limb segment, such as humeral internal-external rotation (HIER) and forearm pronation-supination (FPS). Unfortunately, most existing methods to compensate for STA were designed for optoelectronic motion capture systems. We present and evaluate a STA compensation method that 1) compensates for STA in HIER and/or FPS, 2) is developed specifically for electromagnetic motion capture systems, and 3) does not require additional calibration or data. To compensate for STA, calculation of HIER angles rely on forearm orientation, and calculation of FPS angles rely on hand orientation. To test this approach, we recorded whole-arm movement data from eight subjects and compared their joint angle trajectories calculated according to progressive levels of STA compensation. Compensated HIER and FPS angles were significantly larger than uncompensated angles. Although the effect of STA compensation on other joint angles (besides HIER and FPS) was usually modest, significant effects were seen in certain DOF under some conditions. Overall, the method functioned as intended during most of the range of motion of the upper limb, but it becomes unstable in extreme elbow extension and extreme wrist flexion-extension. Specifically, this method is not recommended for movements within 20° of full elbow extension, full wrist flexion, or full wrist extension. Since this method does not require additional calibration of data, it can be applied retroactively to data collected without the intent to compensate for STA.


2001 ◽  
Vol 85 (5) ◽  
pp. 2298-2302 ◽  
Author(s):  
Tod A. Martin ◽  
Bradley E. Greger ◽  
Scott A. Norris ◽  
W. Thomas Thach

In a previous study, others have hypothesized that the variance in vertical errors that occurs while throwing at visual targets is caused by changes in any of three throw parameters: hand location in space, hand translational velocity, and hand orientation. From an analysis of skilled throwers, those authors concluded that vertical error is best correlated with variance in hand orientation, which in turn is related to the timing of ball release. We used a vertical prism adaptation paradigm to investigate which of these throwing parameters subjects use when adapting to external perturbation. Our subjects showed no correlation between hand position or hand translational velocity and ball impact height in normal, over-practiced throwing. However, video-based motion analysis showed that modifications both of position and speed of the hand play an important role when subjects are forced to compensate for a vertically shifting prism perturbation during a dart-like throw (these factors contribute ∼30% of the adaptation). We concluded that, during adaptation, more degrees of freedom and more sources of potential error are modified to achieve the gaze–throw recalibration required to hit the target than are employed in this type of throw during normal conditions.


1997 ◽  
Vol 84 (3_suppl) ◽  
pp. 1267-1283 ◽  
Author(s):  
Pascual Marques-Bruna ◽  
Paul N. Grimshaw

7 children 15 to 30 mo. old participated in a study of 3–dimensional kinematics of overarm throwing. Children of different ages were considered to be at different developmental stages of motor development. Video recordings were digitised and 3-dimensional coordinates established using the DLT algorithm. Qualitative analysis indicated that the children executed either a ‘static’ or ‘dynamic’ throwing action. Either could further be classified as ‘arm dominated’ or ‘sequentially linked.’ Maximum elbow extension was no more than 163° for any child; release velocity was higher for older subjects; and the angle of ball release was large in ‘arm-dominated throws’ ( M = 49°) and comparatively smaller in ‘sequentially linked’ throws ( M = 15°).


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Murat Ucak

Abstract Background The radial nerve is one of the most common war-related injury sites due to penetrating cutting tool injuries or gunshot wounds, resulting in drop-hand syndrome. The aim of this study was to evaluate the outcomes of tendon transfer in patients with drop-hand syndrome who had been injured in the Syrian Civil War. Methods This level-II, prospective, comparative study included 13 civilians injured in the Syrian Civil War 2015 and 2017. The palmaris longus tendon was used for transfer to the extensor pollicis longus for thumb extension. The pronator teres was transferred to the extensor carpi radialis brevis for wrist extension. The flexor carpi radialis was transferred to the extensor digiti communis for 2nd, 3rd, 4th, and 5th finger extension. All outcomes of thumb abduction and extension, wrist extension, wrist flexion, and finger extension were assessed. Results There was a high level of radial nerve injury in all patients included in the study. The time from injury to treatment ranged from 1.5 months to 9 months. The mechanism of injury most commonly observed was a gunshot wound, which was observed in 8 patients (61.5%), followed by a penetrating cutting tool injury (n = 3; 23.1%) and humerus fracture (n = 2; 15.4%). Conclusions In radial nerve injuries, successful results can be achieved with tendon transfer. All patients regained thumb abduction of up to approximately 60°. All the patients were able to bend the wrist, grip, and extend the fingers while in wrist flexion, neutral wrist and wrist extension positions. Although the reason for the radial injury varied, the postoperative outcomes were good for all patients, and the rehabilitation period progressed successfully in patients who underwent tendon transfer repair within 90 days of injury.


2018 ◽  
Vol 38 (4) ◽  
pp. 959-966 ◽  
Author(s):  
Nathaniel Millard ◽  
Andrew DeMoss ◽  
Gary McIlvain ◽  
Joseph A. Beckett ◽  
John J. Jasko ◽  
...  

2019 ◽  
Vol 31 (5) ◽  
pp. 629-640 ◽  
Author(s):  
Jawad M. Khalifeh ◽  
Christopher F. Dibble ◽  
Anna Van Voorhis ◽  
Michelle Doering ◽  
Martin I. Boyer ◽  
...  

OBJECTIVEPatients with cervical spinal cord injury (SCI)/tetraplegia consistently rank restoring arm and hand function as their top functional priority to improve quality of life. Motor nerve transfers traditionally used to treat peripheral nerve injuries are increasingly being used to treat patients with cervical SCIs. In this study, the authors performed a systematic review summarizing the published literature on nerve transfers to restore upper-extremity function in tetraplegia.METHODSA systematic literature search was conducted using Ovid MEDLINE 1946–, Embase 1947–, Scopus 1960–, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and clinicaltrials.gov to identify relevant literature published through January 2019. The authors included studies that provided original patient-level data and extracted information on clinical characteristics, operative details, and strength outcomes after nerve transfer procedures. Critical review and synthesis of the articles were performed.RESULTSTwenty-two unique studies, reporting on 158 nerve transfers in 118 upper limbs of 92 patients (87 males, 94.6%) were included in the systematic review. The mean duration from SCI to nerve transfer surgery was 18.7 months (range 4 months–13 years) and mean postoperative follow-up duration was 19.5 months (range 1 month–4 years). The main goals of reinnervation were the restoration of thumb and finger flexion, elbow extension, and wrist and finger extension. Significant heterogeneity in transfer strategy and postoperative outcomes were noted among the reports. All but one case report demonstrated recovery of at least Medical Research Council grade 3/5 strength in recipient muscle groups; however, there was greater variation in the results of larger case series. The best, most consistent outcomes were demonstrated for restoration of wrist/finger extension and elbow extension.CONCLUSIONSMotor nerve transfers are a promising treatment option to restore upper-extremity function after SCI. Flexor reinnervation strategies show variable treatment effect sizes; however, extensor reinnervation may provide more consistent, meaningful recovery. Despite numerous published case reports describing good patient outcomes with nerve transfers, there remains a paucity in the literature regarding optimal timing and long-term clinical outcomes with these procedures.


1999 ◽  
Vol 82 (1) ◽  
pp. 103-114 ◽  
Author(s):  
D. Timmann ◽  
S. Watts ◽  
J. Hore

We investigated the idea that the cerebellum is required for precise timing of fast skilled arm movements by studying one situation where timing precision is required, namely finger opening in overarm throwing. Specifically, we tested the hypothesis that in overarm throws made by cerebellar patients, ball high-low inaccuracy is due to disordered timing of finger opening. Six cerebellar patients and six matched control subjects were instructed to throw tennis balls at three different speeds from a seated position while angular positions in three dimensions of five arm segments were recorded at 1,000 Hz with the search-coil technique. Cerebellar patients threw more slowly than controls, were markedly less accurate, had more variable hand trajectories, and showed increased variability in the timing, amplitude, and velocity of finger opening. Ball high-low inaccuracy was not related to variability in the height or direction of the hand trajectory or to variability in finger amplitude or velocity. Instead, the cause was variable timing of finger opening and thereby ball release occurring on a flattened arc hand trajectory. The ranges of finger opening times and ball release times (timing windows) for 95% of the throws were on average four to five times longer for cerebellar patients; e.g., across subjects mean ball release timing windows for throws made under the medium-speed instruction were 11 ms for controls and 55 ms for cerebellar patients. This increased timing variability could not be explained by disorder in control of force at the fingers. Because finger opening in throwing is likely controlled by a central command, the results implicate the cerebellum in timing the central command that initiates finger opening in this fast skilled multijoint arm movement.


Sign in / Sign up

Export Citation Format

Share Document