Two distinct low-voltage-activated Ca2+ currents contribute to the pacemaker mechanism in cockroach dorsal unpaired median neurons

1996 ◽  
Vol 76 (2) ◽  
pp. 963-976 ◽  
Author(s):  
F. Grolleau ◽  
B. Lapied

1. The contribution of Ca2+ currents to the endogenous firing properties of cockroach isolated adult dorsal unpaired median neurons was investigated using whole cell patch-clamp technique with 5 mM Ca2+ as the charge carrier. At least three types of Ca2+ currents, a high-voltage-activated Ca2+ current and two low-voltage-activated (LVA) Ca2+ currents, have been found in these neurons. This study focused on the LVA Ca2+ currents, which are suitable candidates in the generation of the slow predepolarization because of their low threshold of activation. 2. The global LVA Ca2+ current could be dissociated by means of nickel sensitivity, deactivation time constant and voltage dependence of time to peak, tail current amplitude and inactivation, as transient and maintained LVA Ca2+ currents. 3. The transient LVA Ca2+ current, sensitive to 100 microM Ni2+, was isolated by using a subtraction procedure. It was activated at -70 mV and half-inactivated at -59.5 mV. The inactivation was purely voltage dependent. Current-clamp experiments performed with 150 microM Ni2+ indicated that this current was involved in the initial part of the predepolarization. 4. The maintained LVA Ca2+ current, resistant to 100 microM Ni2+, was activated in a range of potential 10 mV more positive than the transient LVA Ca2+ current, and its voltage dependence of inactivation displayed a U-shaped-curve. 5. Replacing Ca2+ with Ba2+ in equimolar amount or low internal Ca2+ concentration [5 mM bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) in the pipette] induced a monotonic voltage dependence of inactivation and increased the rate of relaxation of this current. These effects were mimicked by high internal Ca2+ concentration [0.1 mM Ca2+ and no ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid in the pipette]. This demonstrated an unusual Ca2+-sensitive inactivation process that varied over a narrow range of Ca2+ concentrations. 6. Current-clamp experiments performed under 150 microM Ni2+, with 15 mM external Ca2+ concentration (which potentiated the maintained LVA current within 30 s of superfusion) or with 5 mM BAPTA in the pipette demonstrated the participation of this current in the last two-thirds of the slow predepolarizing phase. 7. Our findings demonstrated, for the first time in neurosecretory cells, the coexistence of two distinct LVA Ca2+ currents, which have specialized function in the generation of the pacemaker activity.

1992 ◽  
Vol 68 (1) ◽  
pp. 85-92 ◽  
Author(s):  
M. Mynlieff ◽  
K. G. Beam

1. Calcium channel currents were measured with the whole-cell patch clamp technique in cultured, identified mouse motoneurons. Three components of current were operationally defined on the basis of voltage dependence, kinetics, and pharmacology. 2. Test potentials to -50 mV or greater (10 mM external Ca2+) elicited a low-voltage activated T-type current that was transient (decaying to baseline in less than 200 ms) and had a relatively slow time to peak (20-50 ms). A 1-s prepulse to -45 mV produced approximately half-maximal inactivation of this T current. 3. Two high-voltage activated (HVA) components of current (1 transient and 1 sustained) were activated by test potentials to -20 mV or greater (10 mM external Ca2+). A 1-s prepulse to -35 mV produced approximately half-maximal inactivation of the transient component without affecting the sustained component. 4. When Ba2+ was substituted for Ca2+ as the charge carrier, activation of the HVA components was shifted in the hyperpolarizing direction, and the relative amplitude of the transient HVA component was reduced. 5. Amiloride (1-2 mM) caused a reversible, partial block of the T current without affecting the HVA components. 6. The dihydropyridine agonist isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-nitro-3- pyridine-carboxylate [(+)-SDZ 202-791, 100 nM-1 microM)] shifted the activation of the sustained component of HVA current to more negative potentials and increased its maximal amplitude. Additionally, (+)-SDZ 202-791 caused the appearance of a slowed component of tail current.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 77 (1) ◽  
pp. 186-199 ◽  
Author(s):  
Dieter Wicher ◽  
Heinz Penzlin

Wicher, Dieter, and Heinz Penzlin. Ca2+ currents in central insect neurons: electrophysiological and pharmacological properties. J. Neurophysiol. 77: 186–199, 1997. Ca2+ currents in dorsal unpaired median (DUM) neurons isolated from the fifth abdominal ganglion of the cockroach Periplaneta americana were investigated with the whole cell patch-clamp technique. On the basis of kinetic and pharmacological properties, two different Ca2+ currents were separated in these cells: mid/low-voltage-activated (M-LVA) currents and high-voltage-activated (HVA) currents. M-LVA currents had an activation threshold of −50 mV and reached maximal peak values at −10 mV. They were sensitive to depolarized holding potentials and decayed very rapidly. The decay was largely Ca2+ dependent. M-LVA currents were effectively blocked by Cd2+ median inhibiting concentration (IC50 = 9 μM), but they also had a remarkable sensitivity to Ni2+ (IC50 = 19 μM). M-LVA currents were insensitive to vertebrate LVA channel blockers like flunarizine and amiloride. The currents were, however, potently blocked by ω-conotoxin MVIIC (1 μM) and ω-agatoxin IVA (50 nM). The blocking effects of ω-toxins developed fast (time constant τ = 15 s) and were fully reversible after wash. HVA currents activated positive to −30 mV and showed maximal peak currents at +10 mV. They were resistant to depolarized holding potentials up to −50 mV and decayed in a less pronounced manner than M-LVA currents. HVA currents were potently blocked by Cd2+ (IC50 = 5 μM) but less affected by Ni2+ (IC50 = 40 μM). These currents were reduced by phenylalkylamines like verapamil (10 μM) and benzothiazepines like diltiazem (10 μM), but they were insensitive to dihydropyridines like nifedipine (10 μM) and BAY K 8644 (10 μM). Furthermore, HVA currents were sensitive to ω-conotoxin GVIA (1 μM). The toxin-induced reduction of currents appeared slowly (τ ∼ 120 s) and the recovery after wash was incomplete in most cases. The dihydropyridine insensitivity of the phenylalkylamine-sensitive HVA currents is a property the cockroach DUM cells share with other invertebrate neurons. Compared with Ca2+ currents in vertebrates, the DUM neuron currents differ considerably from the presently known types. Although there are some similarities concerning kinetics, the pharmacological profile of the cockroach Ca2+ currents especially is very different from profiles already described for vertebrate currents.


1990 ◽  
Vol 258 (2) ◽  
pp. H452-H459 ◽  
Author(s):  
N. Shepherd ◽  
M. Vornanen ◽  
G. Isenberg

We describe the first observations of isolated mammalian guinea pig ventricular myocytes that combine measurements of contractile force with the voltage-clamp method. The myocytes were attached by poly-L-lysine to the beveled ends of a pair of thin glass rods having a compliance of 0.76 m/N. The contractile force of a cell caused a 1- to 3-microm displacement of the rods; the motion of which was converted to an output voltage by phototransistors. By the use of the whole cell patch-clamp technique, the cells were depolarized at 1 Hz with 200-ms-long clamp pulses from -45 to +5 mV (35 degrees C, 3.6 mM CaCl2). Isometric force began after a latency of 7 +/- 2 ms, peaked at 93 +/- 21 ms, and relaxed (90%) at 235 +/- 63 ms. The time course of force was always faster than that of isotonic shortening (time to peak 154 +/- 18 ms). With 400-ms-long depolarizations, a tonic component was recorded as either sustained force or sustained shortening that decayed on repolarization. Substitution of Ca by Sr in the bath increased the inward current through Ca channels but slowed down the time course of force development. The results are consistent with the hypothesis that activator calcium derives mainly from internal stores and that Ca release needs Ca entry through channels.


1995 ◽  
Vol 73 (1) ◽  
pp. 160-171 ◽  
Author(s):  
F. Grolleau ◽  
B. Lapied

1. Whole cell voltage-clamp studies performed in isolated adult neurosecretory cells identified as dorsal unpaired median (DUM) neurons of the terminal abdominal ganglion of the cockroach Periplaneta americana have allowed us to reveal a complex voltage-dependent outward current regulating the pacemaker activity. 2. The global outward current remaining after tetrodotoxin treatment was activated by depolarization above -50 mV, showing steep voltage dependence and outward rectification. 3. We used tail current analysis to determine the ionic selectivity of this outward current. The reversal potentials for two extracellular potassium concentrations (-92.7 and -65.4 mV for 3.1 and 10 mM, respectively) is consistent with the expected equilibrium potential for potassium ions. 4. Both peak and sustained components of the global outward K+ current were reduced by external application of 20 mM tetraethylammonium chloride, 10 nM iberiotoxin, 1 nM charybdotoxin (CTX) and 1 mM cadmium chloride. Subtraction of current recorded in CTX solution from that in control solution revealed an unusual biphasic Ca(2+)-dependent K+ current. The fast transient current resistant to 5 mM 4-aminopyridine (4-AP) is distinguished by its dependence on holding potential and time course from the late sustained current. 5. In addition, two other components of CTX-resistant outward K+ current could be separated by sensitivity to 4-AP, time course, and voltage dependence. Beside a calcium-independent delayed outwardly rectifying current, a 4-AP-sensitive fast transient current resembling the A-current has been also identified. It activates at negative potential (about -65 mV) and unlike the A-current of other neurons, it inactivates rapidly with complex inactivation kinetics. A-like current is half-inactivated at -63.5 mV and half-activated at -35.6 mV. 6. Our findings demonstrate for the first time in DUM neuron cell bodies the existence of multiple potassium currents underlying the spontaneous electrical activity. Their identification and characterization represent a fundamental step in further understanding the pacemaker properties of these insect neurosecretory cells.


2008 ◽  
Vol 132 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Hui Sun ◽  
Diego Varela ◽  
Denis Chartier ◽  
Peter C. Ruben ◽  
Stanley Nattel ◽  
...  

Two types of voltage-dependent Ca2+ channels have been identified in heart: high (ICaL) and low (ICaT) voltage-activated Ca2+ channels. In guinea pig ventricular myocytes, low voltage–activated inward current consists of ICaT and a tetrodotoxin (TTX)-sensitive ICa component (ICa(TTX)). In this study, we reexamined the nature of low-threshold ICa in dog atrium, as well as whether it is affected by Na+ channel toxins. Ca2+ currents were recorded using the whole-cell patch clamp technique. In the absence of external Na+, a transient inward current activated near −50 mV, peaked at −30 mV, and reversed around +40 mV (HP = −90 mV). It was unaffected by 30 μM TTX or micromolar concentrations of external Na+, but was inhibited by 50 μM Ni2+ (by ∼90%) or 5 μM mibefradil (by ∼50%), consistent with the reported properties of ICaT. Addition of 30 μM TTX in the presence of Ni2+ increased the current approximately fourfold (41% of control), and shifted the dose–response curve of Ni2+ block to the right (IC50 from 7.6 to 30 μM). Saxitoxin (STX) at 1 μM abolished the current left in 50 μM Ni2+. In the absence of Ni2+, STX potently blocked ICaT (EC50 = 185 nM) and modestly reduced ICaL (EC50 = 1.6 μM). While TTX produced no direct effect on ICaT elicited by expression of hCaV3.1 and hCaV3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni2+ (IC50 increased to 550 μM Ni2+ for CaV3.1 and 15 μM Ni2+ for CaV3.2); in contrast, 30 μM TTX directly inhibited hCaV3.3-induced ICaT and the addition of 750 μM Ni2+ to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni2+ alone. 1 μM STX directly inhibited CaV3.1-, CaV3.2-, and CaV3.3-mediated ICaT but did not enhance the ability of Ni2+ to block these currents. These findings provide important new implications for our understanding of structure–function relationships of ICaT in heart, and further extend the hypothesis of a parallel evolution of Na+ and Ca2+ channels from an ancestor with common structural motifs.


1991 ◽  
Vol 261 (2) ◽  
pp. C310-C318 ◽  
Author(s):  
Z. S. Agus ◽  
I. D. Dukes ◽  
M. Morad

The modulation of the transient outward K+ current (Ito) by divalent cations was studied in enzymatically isolated rat ventricular myocytes with the whole cell patch-clamp technique. At holding potentials negative to -70 mV, 1 mM Cd2+ suppressed Ito, whereas, at potentials positive to -50 mV, the current was augmented. These effects were caused by shifts in the voltage dependence of both activation and inactivation of Ito toward more positive potentials. Cd2+ also slowed the activation kinetics of Ito by shifting the voltage dependence of its rate of activation, but the rate of inactivation was unaffected. Other divalent cations produced similar shifts but at markedly different concentrations. Thus, in the millimolar range, a rightward shift of approximately 20 mV was produced by 3 Co2+, 5 Ni2+, and 10 Ca2+, whereas 10 microM concentrations of Cu2+ and Zn2+ produced equivalent shifts. Similar effects were seen in hippocampal neurons with micromolar concentrations of Zn2+. Thus divalent cations have marked and specific effects on the kinetics and voltage dependence of Ito and may serve as a regulatory mechanism in its activation, particularly in cells with resting potentials positive to -60 mV.


2001 ◽  
Vol 86 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Muriel Thoby-Brisson ◽  
Jan-Marino Ramirez

In the respiratory network of mice, we characterized with the whole cell patch-clamp technique pacemaker properties in neurons discharging in phase with inspiration. The respiratory network was isolated in a transverse brain stem slice containing the pre-Bötzinger complex (PBC), the presumed site for respiratory rhythm generation. After blockade of respiratory network activity with 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), 18 of 52 inspiratory neurons exhibited endogenous pacemaker activity, which was voltage dependent, could be reset by brief current injections and could be entrained by repetitive stimuli. In the pacemaker group ( n = 18), eight neurons generated brief bursts (0.43 ± 0.03 s) at a relatively high frequency (1.05 ± 0.12 Hz) in CNQX. These bursts resembled the bursts that these neurons generated in the intact network during the interval between two inspiratory bursts. Cadmium (200 μM) altered but did not eliminate this bursting activity, while 0.5 μM tetrodotoxin suppressed bursting activity. Another set of pacemaker neurons (10 of 18) generated in CNQX longer bursts (1.57 ± 0.07 s) at a lower frequency (0.35 ± 0.01 Hz). These bursts resembled the inspiratory bursts generated in the intact network in phase with the population activity. This bursting activity was blocked by 50–100 μM cadmium or 0.5 μM tetrodotoxin. We conclude that the respiratory neural network contains pacemaker neurons with two types of bursting properties. The two types of pacemaker activities might have different functions within the respiratory network.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Pinya Li ◽  
Qiongtao Song ◽  
Tao Liu ◽  
Zhonglin Wu ◽  
Xi Chu ◽  
...  

Cinobufagin (CBG), a major bioactive ingredient of the bufanolide steroid compounds of Chan Su, has been widely used to treat coronary heart disease. At present, the effect of CBG on the L-type Ca2+current (ICa-L) of ventricular myocytes remains undefined. The aim of the present study was to characterize the effect of CBG on intracellular Ca2+([Ca2+]i) handling and cell contractility in rat ventricular myocytes. CBG was investigated by determining its influence onICa-L, Ca2+transient, and contractility in rat ventricular myocytes using the whole-cell patch-clamp technique and video-based edge-detection and dual-excitation fluorescence photomultiplier systems. The dose of CBG (10−8 M) decreased the maximal inhibition of CBG by 47.93%. CBG reducedICa-Lin a concentration-dependent manner with an IC50of 4 × 10−10 M, upshifted the current-voltage curve ofICa-L, and shifted the activation and inactivation curves ofICa-Lleftward. Moreover, CBG diminished the amplitude of the cell shortening and Ca2+transients with a decrease in the time to peak (Tp) and the time to 50% of the baseline (Tr). CBG inhibited L-type Ca2+channels, and reduced[Ca2+]iand contractility in adult rat ventricular myocytes. These findings contribute to the understanding of the cardioprotective efficacy of CBG.


2002 ◽  
Vol 88 (2) ◽  
pp. 869-878 ◽  
Author(s):  
Marcel de Jeu ◽  
Alwin Geurtsen ◽  
Cyriel Pennartz

A Ba2+-sensitive K+ current was studied in neurons of the suprachiasmatic nucleus (SCN) using the whole cell patch-clamp technique in acutely prepared brain slices. This Ba2+-sensitive K+ current was found in approximately 90% of the SCN neurons and was uniformly distributed across the SCN. Current-clamp studies revealed that Ba2+ (500 μM) reversibly depolarized the membrane potential by 6.7 ± 1.3 mV ( n = 22) and concomitantly Ba2+ induced an increase in the spontaneous firing rate of 0.8 ± 0.2 Hz ( n = 12). The Ba2+-evoked depolarizations did not depend on firing activity or spike dependent synaptic transmission. No significant day/night difference in the hyperpolarizing contribution to the resting membrane potential of the present Ba2+-sensitive current was observed. Voltage-clamp experiments showed that Ba2+ (500 μM) reduced a fast-activating, voltage-dependent K+ current. This current was activated at levels below firing threshold and exhibited outward rectification. The Ba2+-sensitive K+ current was strongly reduced by tetraethylammonium (TEA; 20 and 60 mM) but was insensitive to 4-aminopyridine (4-AP; 5 mM) and quinine (100 μM). A component of Ba2+-sensitive K+ current remaining in the presence of TEA exhibited no clear voltage dependence and is less likely to contribute to the resting membrane potential. The voltage dependence, kinetics and pharmacological properties of the Ba2+- and TEA-sensitive K+ current make it unlikely that this current is a delayed rectifier, Ca2+-activated K+ current, ATP-sensitive K+ current, M-current or K+ inward rectifier. Our data are consistent with the Ba2+- and TEA-sensitive K+ current in SCN neurons being an outward rectifying K+ current of a novel identity or belonging to a known family of K+ channels with related properties. Regardless of its precise molecular identity, the current appears to exert a significant hyperpolarizing effect on the resting potential of SCN neurons.


1993 ◽  
Vol 264 (2) ◽  
pp. L116-L123 ◽  
Author(s):  
X. J. Yuan ◽  
W. F. Goldman ◽  
M. L. Tod ◽  
L. J. Rubin ◽  
M. P. Blaustein

To explore possible mechanisms underlying hypoxia-induced pulmonary vasoconstriction, the effect of hypoxia on outward K+ current (Iout) was evaluated in primary cultured rat pulmonary (PA) and mesenteric (MA) arterial smooth muscle cells using the whole cell patch-clamp technique. When the cells were bathed in standard physiological salt solution and the patch pipettes contained Ca(2+)-free media with 10 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), virtually all of the Iout, including both the rapidly inactivating component (Irt) and the steady-state (noninactivating) component (Iss), was mediated by voltage-gated K+ channels. Reduction of O2 tension in the bath solution from 155 Torr to < 74 Torr with sodium dithionite reversibly inhibited both Irt and Iss in PA myocytes, but not in MA myocytes. The hypoxia-sensitive Iss was activated at about -50 mV; thus, some of the channels responsible for this current may be open at the resting membrane potential (-40 +/- 1 mV) of PA cells used in this study. Hypoxia also significantly depolarized PA cells bathed in PSS (1.8 mM Ca2+) from -40.7 +/- 1.3 to -24.0 +/- 2.4 mV, and PA cells bathed in Ca(2+)-free PSS (0.1 mM EGTA) from -38.4 +/- 1.3 to -26.1 +/- 3.9 mV. The hypoxia-induced inhibition of Iout in PA cells was accompanied by an apparent increase in inward Ca2+ current.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document