Force measurements from voltage-clamped guinea pig ventricular myocytes

1990 ◽  
Vol 258 (2) ◽  
pp. H452-H459 ◽  
Author(s):  
N. Shepherd ◽  
M. Vornanen ◽  
G. Isenberg

We describe the first observations of isolated mammalian guinea pig ventricular myocytes that combine measurements of contractile force with the voltage-clamp method. The myocytes were attached by poly-L-lysine to the beveled ends of a pair of thin glass rods having a compliance of 0.76 m/N. The contractile force of a cell caused a 1- to 3-microm displacement of the rods; the motion of which was converted to an output voltage by phototransistors. By the use of the whole cell patch-clamp technique, the cells were depolarized at 1 Hz with 200-ms-long clamp pulses from -45 to +5 mV (35 degrees C, 3.6 mM CaCl2). Isometric force began after a latency of 7 +/- 2 ms, peaked at 93 +/- 21 ms, and relaxed (90%) at 235 +/- 63 ms. The time course of force was always faster than that of isotonic shortening (time to peak 154 +/- 18 ms). With 400-ms-long depolarizations, a tonic component was recorded as either sustained force or sustained shortening that decayed on repolarization. Substitution of Ca by Sr in the bath increased the inward current through Ca channels but slowed down the time course of force development. The results are consistent with the hypothesis that activator calcium derives mainly from internal stores and that Ca release needs Ca entry through channels.

1995 ◽  
Vol 268 (6) ◽  
pp. H2321-H2328 ◽  
Author(s):  
S. Zhang ◽  
T. Sawanobori ◽  
H. Adaniya ◽  
Y. Hirano ◽  
M. Hiraoka

Effects of extracellular magnesium (Mg2+) on action potential duration (APD) and underlying membrane currents in guinea pig ventricular myocytes were studied by using the whole cell patch-clamp method. Increasing external Mg2+ concentration [Mg2+]o) from 0.5 to 3 mM produced a prolongation of APD at 90% repolarization (APD90), whereas 5 and 10 mM Mg2+ shortened it. [Mg2+]o, at 3 mM or higher, suppressed the delayed outward K+ current and the inward rectifier K+ current. Increases in [Mg2+]o depressed the peak amplitude and delayed the decay time course of the Ca2+ current (ICa), the latter effect is probably due to the decrease in Ca(2+)-induced inactivation. Thus 3 mM Mg2+ suppressed the peak ICa but increased the late ICa amplitude at the end of a 200-ms depolarization pulse, whereas 10 mM Mg2+ suppressed both components. Application of 10 mM Mg2+ shifted the voltage-dependent activation and inactivation by approximately 10 mV to more positive voltage due to screening the membrane surface charges. Application of manganese (1-5 mM) also caused dual effects on APD90, similar to those of Mg2+, and suppressed the peak ICa with slowed decay. These results suggest that the dual effects of Mg2+ on APD in guinea pig ventricular myocytes can be, at least in part, explained by its action on ICa with slowed decay time course in addition to suppressive effects on K+ currents.


1998 ◽  
Vol 275 (1) ◽  
pp. C293-C302 ◽  
Author(s):  
Lisa M. Middleton ◽  
Robert D. Harvey

The role of protein kinase C (PKC) in regulating the protein kinase A (PKA)-activated Cl− current conducted by the cardiac isoform of the cystic fibrosis transmembrane conductance regulator (cCFTR) was studied in guinea pig ventricular myocytes using the whole cell patch-clamp technique. Although stimulation of endogenous PKC with phorbol 12,13-dibutyrate (PDBu) alone did not activate this Cl− current, even when intracellular dialysis was limited with the perforated patch-clamp technique, activation of PKC did elicit a significant response in the presence of PKA-dependent activation of the current by the β-adrenergic receptor agonist isoproterenol. PDBu increased the magnitude of the Cl− conductance activated by a supramaximally stimulating concentration of isoproterenol by 21 ± 3.3% ( n = 9) when added after isoproterenol and by 36 ± 16% ( n= 14) when introduced before isoproterenol. 4α-Phorbol 12,13-didecanoate, a phorbol ester that does not activate PKC, did not mimic these effects. Preexposure to chelerythrine or bisindolylmaleimide, two highly selective inhibitors of PKC, significantly reduced the magnitude of the isoproterenol-activated Cl− current by 79 ± 7.7% ( n = 11) and 52 ± 10% ( n = 8), respectively. Our results suggest that although acute activation of endogenous PKC alone does not significantly regulate cCFTR Cl− channel activity in native myocytes, it does potentiate PKA-dependent responses, perhaps most dramatically demonstrated by basal PKC activity, which may play a pivotal role in modulating the function of these channels.


1999 ◽  
Vol 277 (1) ◽  
pp. H119-H127 ◽  
Author(s):  
Michael Dittrich ◽  
Jürgen Daut

Capillary fragments were isolated from guinea pig hearts, and their electrical properties were studied using the perforated-patch and cell-attached mode of the patch-clamp technique. A voltage-dependent K+ current was discovered that was activated at potentials positive to −20 mV and showed a sigmoid rising phase. For depolarizing voltage steps from −128 to +52 mV, the time to peak was 71 ± 5 ms (mean ± SE) and the amplitude of the current was 3.7 ± 0.5 pA/pF in the presence of 5 mM external K+. The time course of inactivation was exponential with a time constant of 7.2 ± 0.5 s at +52 mV. The current was blocked by tetraethylammonium (inhibitory constant ∼3 mM) but was not affected by charybdotoxin (1 μM) or apamin (1 μM). In the cell-attached mode, depolarization-activated single-channel currents were found that inactivated completely within 30 s; the single-channel conductance was 12.3 ± 2.4 pS. The depolarization-activated K+current described here may play a role in membrane potential oscillations of the endothelium.


1997 ◽  
Vol 272 (1) ◽  
pp. C240-C253 ◽  
Author(s):  
Y. Waniishi ◽  
R. Inoue ◽  
Y. Ito

The effects of hypotonic cell swelling (HCS) on muscarinic receptor-activated cationic current in guinea pig ileal smooth muscle were investigated by the whole cell patch-clamp technique. With nystatin-perforated recording, reduced external tonicity from 312 to 262 mosM caused cell swelling but hardly affected the membrane currents activated by depolarization, such as outward-rectifying K and voltage-dependent Ca currents. In contrast, the inward current evoked by carbachol at -60 mV was greatly increased (approximately 50%) by the same extent of hypotonicity. This effect is likely to occur through potentiation of nonselective cation channels coupled to the muscarinic receptor (mNSCCs) and probably does not involve elevated intracellular Ca2+ concentration ([Ca2+]i), since neither removal of external Ca2+ nor [Ca2+]i buffering with 10 mM 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid significantly affected the results. Furthermore, the time course and degree of this potentiation closely matched those of video-microscopically monitored HCS. These results support the view that mechanosensitive modulation may be a powerful mechanism to regulate mNSCCs activity in gut smooth muscle, together with membrane potential and [Ca2+]i.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Pinya Li ◽  
Qiongtao Song ◽  
Tao Liu ◽  
Zhonglin Wu ◽  
Xi Chu ◽  
...  

Cinobufagin (CBG), a major bioactive ingredient of the bufanolide steroid compounds of Chan Su, has been widely used to treat coronary heart disease. At present, the effect of CBG on the L-type Ca2+current (ICa-L) of ventricular myocytes remains undefined. The aim of the present study was to characterize the effect of CBG on intracellular Ca2+([Ca2+]i) handling and cell contractility in rat ventricular myocytes. CBG was investigated by determining its influence onICa-L, Ca2+transient, and contractility in rat ventricular myocytes using the whole-cell patch-clamp technique and video-based edge-detection and dual-excitation fluorescence photomultiplier systems. The dose of CBG (10−8 M) decreased the maximal inhibition of CBG by 47.93%. CBG reducedICa-Lin a concentration-dependent manner with an IC50of 4 × 10−10 M, upshifted the current-voltage curve ofICa-L, and shifted the activation and inactivation curves ofICa-Lleftward. Moreover, CBG diminished the amplitude of the cell shortening and Ca2+transients with a decrease in the time to peak (Tp) and the time to 50% of the baseline (Tr). CBG inhibited L-type Ca2+channels, and reduced[Ca2+]iand contractility in adult rat ventricular myocytes. These findings contribute to the understanding of the cardioprotective efficacy of CBG.


1997 ◽  
Vol 272 (3) ◽  
pp. H1292-H1301 ◽  
Author(s):  
B. A. Williams ◽  
G. N. Beatch

The sensitivity of the delayed rectifier K+ current (I(K)) to intracellular Mg2+ was investigated in guinea pig ventricular myocytes using the whole cell patch-clamp technique. An increase in free intracellular Mg2+ concentration ([Mg2+]i) led to a dose-dependent decrease in I(K) with a half-maximal effect of approximately 20 nM. Activation of I(K) was shifted toward more positive voltages on increasing [Mg2+]i, but little effect was observed on activation and deactivation kinetics. Isoproterenol increased I(K) and was partially reversible in both control and 100 nM [Mg2+]i. The antiarrhythmic drug dofetilide was used to separate I(K) into its two components, rapidly activating (I(Kr)) and slowly activating (I(Ks)). The magnitude of both components decreased to a similar extent with an increase in [Mg2+]i. As [Mg2+]i was reduced, however, the number of experiments in which the dofetilide-sensitive current I(Kr) displayed inward rectification was reduced. In contrast to results previously reported for frog myocytes, it is unlikely that Mg2+ effects on guinea pig I(K) are mediated by a protein phosphatase.


1990 ◽  
Vol 259 (5) ◽  
pp. H1448-H1454 ◽  
Author(s):  
R. W. Hadley ◽  
J. R. Hume

Currents through time-dependent K+ channels (also referred to as IK or the delayed rectifier) were studied with the whole cell patch-clamp technique in isolated guinea pig ventricular myocytes. IK measurements were restricted to the examination of deactivation tail currents. Substitution of various monovalent cations for external K+ produced shifts of the reversal potential of IK. These shifts were used to calculate permeability ratios relative to K+. The permeability sequence for the IK channels was K+ = Rb+ greater than NH4+ = Cs+ greater than Na+. Time-dependent outward currents were also examined when the myocytes were dialyzed with Cs+ instead of K+. A sizeable time-dependent outward current, quite similar to that seen with K+ dialysis, was demonstrated. This current was primarily carried by intracellular Cs+, as the reversal potential of the current shifted 46 mV per 10-fold change of external Cs+ concentration. The significance of Cs+ permeation through IK channels is discussed with respect to the common use of Cs+ in isolating other currents.


2002 ◽  
Vol 119 (4) ◽  
pp. 297-312 ◽  
Author(s):  
Junyuan Gao ◽  
Randy S. Wymore ◽  
Yongli Wang ◽  
Glenn R. Gaudette ◽  
Irvin B. Krukenkamp ◽  
...  

It is well-known that micromolar to millimolar concentrations of cardiac glycosides inhibit Na/K pump activity, however, some early reports suggested nanomolar concentrations of these glycosides stimulate activity. These early reports were based on indirect measurements in multicellular preparations, hence, there was some uncertainty whether ion accumulation/depletion rather than pump stimulation caused the observations. Here, we utilize the whole-cell patch-clamp technique on isolated cardiac myocytes to directly measure Na/K pump current (IP) in conditions that minimize the possibility of ion accumulation/depletion causing the observed effects. In guinea pig ventricular myocytes, nanomolar concentrations of dihydro-ouabain (DHO) caused an outward current that appeared to be due to stimulation of IP because of the following: (1) it was absent in 0 mM [K+]o, as was IP; (2) it was absent in 0 mM [Na+]i, as was IP; (3) at reduced [Na+]i, the outward current was reduced in proportion to the reduction in IP; (4) it was eliminated by intracellular vanadate, as was IP. Our previous work suggested guinea pig ventricular myocytes coexpress the α1- and α2-isoforms of the Na/K pumps. The stimulation of IP appears to be through stimulation of the high glycoside affinity α2-isoform and not the α1-isoform because of the following: (1) regulatory signals that specifically increased activity of the α2-isoform increased the amplitude of the stimulation; (2) regulatory signals that specifically altered the activity of the α1-isoform did not affect the stimulation; (3) changes in [K+]o that affected activity of the α1-isoform, but not the α2-isoform, did not affect the stimulation; (4) myocytes from one group of guinea pigs expressed the α1-isoform but not the α2-isoform, and these myocytes did not show the stimulation. At 10 nM DHO, total IP increased by 35 ± 10% (mean ± SD, n = 18). If one accepts the hypothesis that this increase is due to stimulation of just the α2-isoform, then activity of the α2-isoform increased by 107 ± 30%. In the guinea pig myocytes, nanomolar ouabain as well as DHO stimulated the α2-isoform, but both the stimulatory and inhibitory concentrations of ouabain were ∼10-fold lower than those for DHO. Stimulation of IP by nanomolar DHO was observed in canine atrial and ventricular myocytes, which express the α1- and α3-isoforms of the Na/K pumps, suggesting the other high glycoside affinity isoform (the α3-isoform) also was stimulated by nanomolar concentrations of DHO. Human atrial and ventricular myocytes express all three isoforms, but isoform affinity for glycosides is too similar to separate their activity. Nevertheless, nanomolar DHO caused a stimulation of IP that was very similar to that seen in other species. Thus, in all species studied, nanomolar DHO caused stimulation of IP, and where the contributions of the high glycoside affinity α2- and α3-isoforms could be separated from that of the α1-isoform, it was only the high glycoside affinity isoform that was stimulated. These observations support early reports that nanomolar concentrations of glycosides stimulate Na/K pump activity, and suggest a novel mechanism of isoform-specific regulation of IP in heart by nanomolar concentrations of endogenous ouabain-like molecules.


2001 ◽  
Vol 79 (7) ◽  
pp. 621-626 ◽  
Author(s):  
Lu-Yun Zou ◽  
Xue-Mei Hao ◽  
Guang-Qing Zhang ◽  
Mei Zhang ◽  
Ji-Hong Guo ◽  
...  

To elucidate possible ionic mechanisms of antimyocardial ischemia and antiarrythmia of tetramethyl pyrazine (TP), we studied L-type Ca2+ currents (ICa.L) in adult rat ventricular myocytes using the whole-cell patch-clamp technique. The results showed: (i) under physiological conditions, 0.25 mmol/L TP decreased amplitude of ICa.L to 60.6% and this inhibition was increased with increasing concentration of TP. ID50 was 0.20 mmol/L. (ii) The Ca2+-antagonistic effect of TP was voltage-dependent. A marked negative shift of the steady-state inactivation curve was observed with long (10 s) conditioning prepulses, but not with short (350 ms) ones. (iii) The time course of inhibition during TP treatment was increased with an increase in drug concentration, and recovery from TP-induced inactivation of ICa.L was slower than in control cases. (iv) Tonic block and use-dependent block with TP treatment, which was induced by increasing the frequency of stimulation, occurred. We suggest that TP inhibits the ICa.L mainly by binding to inactivated Ca2+ channels. The high affinity of TP for the inactivated state of ICa.L may play an important role in developing therapies for pathological conditions.Key words: Tetramethyl pyrazine, L-type calcium current, rat ventricular myocytes.


1991 ◽  
Vol 260 (6) ◽  
pp. H1810-H1818
Author(s):  
M. R. Gold ◽  
G. R. Strichartz

Acute effects of repetitive depolarization on the inward Na+ current (INa) of cultured embryonic chick atrial cells were studied using the whole cell patch-clamp technique. Stimulation rates of 1 Hz or greater produced a progressive decrement of peak INa. With depolarizations to 0 mV of 150-ms duration, applied at 2 Hz from a holding potential of -100 mV, the steady-state decrement was approximately 20%. The magnitude of this effect increased with stimulation frequency and with test potential depolarization and decreased with membrane hyperpolarization. Analysis of INa kinetics revealed that reactivation was sufficiently slow to preclude complete recovery from inactivation with interpulse intervals less than 1,000 ms. Moreover, reactivation accelerated markedly with membrane hyperpolarization, in parallel with the response to repetitive stimulation. The multiexponential time course of recovery of peak INa from repetitive depolarization was similar to that observed after single stimuli; however, there was a shift toward a greater proportion of current recovering with the slower of two time constants. It is concluded that incomplete recovery from inactivation is responsible for the decrement in INa observed with short interpulse intervals.


Sign in / Sign up

Export Citation Format

Share Document