Chemical Stimulation of the Intracranial Dura Induces Enhanced Responses to Facial Stimulation in Brain Stem Trigeminal Neurons

1998 ◽  
Vol 79 (2) ◽  
pp. 964-982 ◽  
Author(s):  
Rami Burstein ◽  
Hiroyoshi Yamamura ◽  
Amy Malick ◽  
Andrew M. Strassman

Burstein, Rami, Hiroyoshi Yamamura, Amy Malick, and Andrew M. Strassman. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J. Neurophysiol. 79: 964–982, 1998. Chemical activation and sensitization of trigeminal primary afferent neurons innervating the intracranial meninges have been postulated as possible causes of certain headaches. This sensitization, however, cannot explain the extracranial hypersensitivity that often accompanies headache. The goal of this study was to test the hypothesis that chemical activation and sensitization of meningeal sensory neurons can lead to activation and sensitization of central trigeminal neurons that receive convergent input from the dura and skin. This hypothesis was investigated by recording changes in the responsiveness of 23 [16 wide-dynamic range (WDR), 5 high threshold (HT), and 2 low threshold (LT)] dura-sensitive neurons in nucleus caudalis to mechanical stimulation of their dural receptive fields and to mechanical and thermal stimulation of their cutaneous receptive fields after local application of inflammatory mediators or acidic agents to the dura. Responses to brief chemical stimulation were recorded in 70% of the neurons; most were short, lasting the duration of the stimulus only. Twenty minutes after chemical stimulation of the dura, the following changes occurred: 1) 95% of the neurons showed significant increases in sensitivity to mechanical indentation of the dura: their thresholds to dural indentation changed from 1.57 to 0.49 g (means, P < 0.0001), and the response magnitude to identical stimuli increased by two- to fourfold; 2) 80% of the neurons showed significant increases in cutaneous mechanosensitivity: their responses to brush and pressure increased 2.5- ( P < 0.05) and 1.6-fold ( P < 0.05), respectively; 3) 75% of the neurons showed a significant increase in cutaneous thermosensitivity: their thresholds to slow heating of the skin changed from 43.7 ± 0.7 to 40.3 ± 0.7°C ( P < 0.005) and to slow cooling from 23.7 ± 3.3 to 29.2 ± 1.8°C ( P < 0.05); 4) dural receptive fields expanded within 30 min and cutaneous receptive fields within 2–4 h; and 5) ongoing activity developed in WDR and HT but not in LT neurons. Application of lidocaine to the dura abolished the response to dural stimulation but had minimal effect on the increased responses to cutaneous stimulation (suggesting involvement of a central mechanism in maintaining the sensitized state). Antidromic activation (current of <30 μA) of dura-sensitive neurons revealed projections to the hypothalamus, thalamus, and midbrain. These findings suggest that chemical activation and sensitization of dura-sensitive peripheral nociceptors could lead to enhanced responses in central neurons and that this central sensitization therefore could result in extracranial tenderness (mechanical and thermal allodynia) in the absence of extracranial pathology. The projection targets of these neurons suggest a possible role in mediating the autonomic, endocrine, and affective symptoms that accompany headaches.

1988 ◽  
Vol 59 (3) ◽  
pp. 886-907 ◽  
Author(s):  
D. G. Ferrington ◽  
J. W. Downie ◽  
W. D. Willis

1. Recordings were made from 67 neurons in the nucleus gracilis (NG) of anesthetized macaque monkeys. All of the cells were activated antidromically from the ventral posterior lateral (VPL) nucleus of the contralateral thalamus. Stimuli used to activate the cells orthodromically were graded innocuous and noxious mechanical stimuli, including sinusoidal vibration and thermal pulses. 2. The latencies of antidromic action potentials following stimulation in the VPL nucleus were significantly shorter for cells in the caudal compared with the rostral NG. The mean minimum afferent conduction velocity of the afferent conduction velocity of the afferent fibers exciting the NG cells was 52 m/s, as judged from the latencies of the cells to orthodromic volleys evoked by electrical stimulation of peripheral nerves. The overall conduction velocity of the pathway from peripheral nerve to thalamus was approximately 40 m/s. 3. Cutaneous receptive fields on the distal hindlimb usually occupied an area equivalent to much less than a single digit. However, a few cells had receptive fields up to or exceeding the area of the foot. 4. NG cells were classified by their responses to graded mechanical stimulation of the skin as low threshold (LT) or wide dynamic range (WDR). No high-threshold NG cells were found. A special subcategory of pressure-sensitive LT (SA) neurons was recognized. Many of these cells were maximally responsive to maintained indentation of the skin. The sample of NG cells differed from the population of primate spinothalamic and spinocervicothalamic pathways so far examined, in having a larger proportion of LT neurons and a smaller proportion of WDR cells. A few NG cells responded best to manipulation of subcutaneous tissue. 5. Discriminant analysis permitted the NG cells to be assigned to classes determined by a k-means cluster analysis of the responses of a reference set of 318 primate spinothalamic tract (STT) cells. There were four classes of cells based on normalized responses of individual neurons and another four classes based upon responses compared across the population of cells. The NG cells were allocated to the various categories in different proportions than either primate STT cells or spinocervicothalamic neurons, consistent with the view that the functional roles of these somatosensory pathways differ. 6. Some of the pressure-sensitive NG cells were excited when the skin was stretched, suggesting an input from type II slowly adapting (Ruffini) mechanoreceptors.(ABSTRACT TRUNCATED AT 400 WORDS)


1988 ◽  
Vol 59 (3) ◽  
pp. 861-885 ◽  
Author(s):  
J. W. Downie ◽  
D. G. Ferrington ◽  
L. S. Sorkin ◽  
W. D. Willis

1. The response properties of neurons of the spinocervicothalamic pathway were studied in anesthetized macaque monkeys. Graded innocuous and noxious mechanical stimuli, including sinusoidal vibration and thermal pulses, were applied to the cutaneous receptive fields. 2. Forty-nine cells in the lateral cervical nucleus (LCN) were identified by antidromic activation from the ventral posterior lateral (VPL) nucleus of the contralateral thalamus. Twelve spinocervical tract (SCT) cells in the lumbosacral enlargement of the spinal cord were identified by antidromic activation from stimulation of the ipsilateral dorsolateral funiculus below C3 but not above C1. 3. Latencies for antidromic activation of LCN neurons averaged 2.3 ms, corresponding to a mean conduction velocity of approximately 17 m/s. Mean latency for orthodromic activation of LCN neurons following electrical stimulation of peripheral nerves was 12.6 ms. Overall mean conduction velocity for the monkey spinocervicothalamic pathway was estimated to be 29 m/s. 4. Most LCN cells had receptive fields on hairy skin, but some had input from glabrous skin and a few had subcutaneous fields. The receptive fields of most SCT cells had a glabrous skin component. Receptive fields tended to be smaller for SCT than LCN cells even for fields on a comparable part of the distal hindlimb. 5. Based on their responses to a series of mechanical stimuli (brushing, pressure, pinch, and squeeze), LCN and SCT cells were classified as low-threshold (LT), wide dynamic range (WDR), or high-threshold (HT) neurons. Most of the cells were in the LT or WDR classes. Thus the spinocervicothalamic pathway in the monkey differs from the spinothalamic tract (STT), in that STT cells are generally of the WDR or HT classes. 6. With the use of discriminant analysis, LCN and SCT neurons were allocated to categories determined from a k-means cluster analysis of the responses of 318 STT cells. The LCN and SCT neurons were in different proportions in the various categories than were STT cells, suggesting differences in the signaling properties of the spinocervicothalamic and spinothalamic paths. 7. Innocuous steady indentation of the skin failed to excite any of the neurons tested. Thus no positive evidence was obtained for an input to LCN neurons from slowly adapting mechanoreceptors. 8. Sinusoidal vibratory stimuli were used to test the ability of LCN and SCT neurons to follow repeated innocuous mechanical stimuli. Vibration at 10 Hz and an amplitude of 100 micron resulted in repetitive discharges in most LCN neurons and half the SCT neurons tested; many LCN neurons had thresholds below 25 micron.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 77 (6) ◽  
pp. 3122-3133 ◽  
Author(s):  
A. Ebersberger ◽  
M. Ringkamp ◽  
P. W. Reeh ◽  
H. O. Handwerker

Ebersberger, A., M. Ringkamp, P. W. Reeh, and H. O. Handwerker. Recordings from brain stem neurons responding to chemical stimulation of the subarachnoid space. J. Neurophysiol. 77: 3122–3133, 1997. The subarachnoid space at the base of the skull was perfused continuously with artificial cerebrospinal fluid in anesthetized rats. A combination of inflammatory mediators consisting of histamine, bradykinin, serotonin, and prostaglandin E2 (10−5 M) at pH of 6.1 was introduced into the flow for defined periods to stimulate meningeal primary afferents. Secondary neurons in the caudal nucleus of the trigeminal brain stem were searched by electrical stimulation of the cornea. Of the units receiving oligosynaptic input from the cornea, 44% were excited by stimulation of the meninges with inflammatory mediators. Most of these units had small receptive fields including cornea and the periorbital region, and their responsiveness was restricted to stimuli of noxiuos intensity. Three types of responses to stimulation of the meninges with algogenic agents were encountered: responses that did not outlast the stimulus period, responses outlasting the stimulus period for several minutes, and oscillating response patterns containing periods of enhanced and suppressed activity. The response pattern of a unit was reproducible, however, upon repetitive stimulation at 20-min intervals; the response magnitude showed tachyphylaxis upon stimulus repetition. The preparation presented mimics pathophysiolocial states normally accompanied by headache, e.g., subarachnoidal bleeding. Responsiveness of neurons in the caudal nucleus of the trigeminal brain stem to inflammatory mediators may play a role in the generation and maintenance of headache, e.g., migraine.


1991 ◽  
Vol 66 (1) ◽  
pp. 261-284 ◽  
Author(s):  
R. Burstein ◽  
R. J. Dado ◽  
K. D. Cliffer ◽  
G. J. Giesler

1. Ninety-six neurons in the lumbar enlargement of urethananesthetized rats were antidromically activated from the contralateral hypothalamus. The antidromic stimulating electrode was moved systematically within the hypothalamus until antidromic activation could be produced with currents of less than or equal to 50 microA (18.6 +/- 10.8 microA; mean +/- SD). The points at which antidromic activation thresholds were lowest were found in several regions of the hypothalamus but were concentrated in the optic tract and the supraoptic decussation. 2. The recording locations of 79 spinohypothalamic tract (SHT) neurons were marked and recovered. Twenty-nine were located in the superficial dorsal horn (SDH), 42 in the deep dorsal horn (DDH), 4 in the intermediate zone, and 2 in the gray matter surrounding the central canal. Two additional marks were located in the dorsal lateral funiculus (DLF). 3. The responses of 46 SHT neurons were examined during innocuous and noxious mechanical stimulation of their receptive fields. Forty-eight percent of recorded SHT neurons responded to both innocuous and noxious stimuli (wide dynamic range, WDR) and 39% responded only to noxious stimuli (high threshold, HT). Therefore 87% of SHT neurons responded preferentially or exclusively to noxious mechanical stimulation. Nine percent of SHT neurons responded exclusively to innocuous manipulation of joints and muscles. Four percent of SHT neurons responded only to innocuous tactile stimul (low threshold, LT). WDR, HT, and LT neurons were recorded widely throughout the dorsal horn; no relationship was found between the locations of recording sites in the dorsal horn and the response types of the neurons. SHT neurons that responded to stimulation of muscle, tendon, or joint were recorded deep in the gray matter. 4. The effects of heating the receptive fields were determined for 25 SHT neurons. Fourteen (56%) responded to thermal stimuli. Six (43%) of the responsive neurons responded at low frequencies to innocuous warming (38-41 degrees C) but more vigorously to noxious (greater than or equal to 45 degrees C) heating. The other eight responded only to noxious heat. Eighteen percent (3/17) of tested SHT neurons were activated by noxious cooling of their receptive fields. 5. Cutaneous receptive fields of most recorded SHT neurons were small, typically involving areas as small as two or three toes on the ipsilateral hindlimb; the largest receptive fields covered the entire paw. These findings indicate that relatively precise information about the location of innocuous and noxious stimuli is conveyed directly to the hypothalamus by SHT neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


Cephalalgia ◽  
2020 ◽  
pp. 033310242097046
Author(s):  
Michael Koch ◽  
Julika Sertel-Nakajima ◽  
Karl Messlinger

Background The pathophysiology of headaches associated with rhinosinusitis is poorly known. Since the generation of headaches is thought to be linked to the activation of intracranial afferents, we used an animal model to characterise spinal trigeminal neurons with nociceptive input from the dura mater and paranasal sinuses. Methods In isoflurane anaesthetised rats, extracellular recordings were made from neurons in the spinal trigeminal nucleus with afferent input from the exposed frontal dura mater. Dural and facial receptive fields were mapped and the paranasal cavities below the thinned nasal bone were stimulated by sequential application of synthetic interstitial fluid, 40 mM potassium chloride, 100 µM bradykinin, 1% ethanol (vehicle) and 100 µm capsaicin. Results Twenty-five neurons with input from the frontal dura mater and responses to chemical stimulation of the paranasal cavities were identified. Some of these neurons had additional receptive fields in the parietal dura, most of them in the face. The administration of synthetic interstitial fluid, potassium chloride and ethanol was not followed by significant changes in activity, but bradykinin provoked a cluster of action potentials in 20 and capsaicin in 23 neurons. Conclusion Specific spinal trigeminal neurons with afferent input from the cranial dura mater respond to stimulation of paranasal cavities with noxious agents like bradykinin and capsaicin. This pattern of activation may be due to convergent input of trigeminal afferents that innervate dura mater and nasal cavities and project to spinal trigeminal neurons, which could explain the genesis of headaches due to disorders of paranasal sinuses.


1991 ◽  
Vol 66 (1) ◽  
pp. 83-102 ◽  
Author(s):  
M. V. Smith ◽  
A. V. Apkarian ◽  
C. J. Hodge

1. The upper cervical spinal cord contains over one-third of the cells of the spinothalamic tract (STT). This study investigated response properties of contralaterally projecting STT neurons in C2 of the cat by the use of single-unit, microelectrode recordings. Standard antidromic stimulation and collision techniques were used to identify STT units projecting to the contralateral thalamus. Once an STT unit was found, its receptive field (RF) and responses to cutaneous stimuli such as touch, pressure, deep muscle squeeze, tap, noxious pinch, and heat were characterized. C2 units that were not activated from the contralateral thalamus (non-STT units) were also characterized. The locations of thalamic stimulation electrodes and spinal recording sites were reconstructed from electrolytic lesions. 2. A total of 48 STT and 68 non-STT units were well characterized. RF sizes were classified as small, intermediate, large, or whole body. Each unit was also classified as having one of two possible response types: simple units were those with homogeneous responses within the RF and were classified as low threshold (LT), high threshold (HT), wide dynamic range (WDR), deep, or tap. Complex units were those that responded differently in different regions of the RF. 3. The average depth of non-STT units subdivided by RF size was 2.1 +/- 0.6 (SD) mm for cells with small RFs, 2.4 +/- 0.8 mm for cells with intermediate RFs, 2.8 +/- 0.3 mm for cells with large RFs, and 2.7 +/- 0.5 mm for cells with whole-body RFs. The average depth of non-STT units based on response type was 2.0 +/- 0.5 mm for LT, 2.3 +/- 0.7 mm for HT, 2.1 +/- 0.7 mm for WDR, 2.6 +/- 0.9 mm for deep, 2.6 +/- 0.5 mm for tap, and 2.4 +/- 0.2 mm for complex. 4. A somatotopic organization along the rostrocaudal length of C2 and upper C3 was observed for non-STT units with small- and intermediate-size RFs. The average distance of the recording sites from the rostralmost dorsal rootlet of C2 was 3.8 +/- 2.1 mm for units with RFs on the face, 7.1 +/- 4.3 mm for units with RFs on the neck, and 11.9 +/- 5.1 mm for units with RFs on the forelimb. 5. The average threshold for antidromic activation of STT units was 175 +/- 120 microA. Most C2 STT units were activated from the ventroposterior region of the thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 91 (1) ◽  
pp. 213-222 ◽  
Author(s):  
Donald A. Simone ◽  
Xijing Zhang ◽  
Jun Li ◽  
Jun-Ming Zhang ◽  
Christopher N. Honda ◽  
...  

We investigated the role of mechanosensitive spinothalamic tract (STT) neurons in mediating 1) the itch evoked by intradermal injection of histamine, 2) the enhanced sense of itch evoked by innocuous stroking (alloknesis), and 3) the enhanced pain evoked by punctate stimulation (hyperalgesia) of the skin surrounding the injection site. Responses to intradermal injections of histamine and capsaicin were compared in STT neurons recorded in either the superficial or the deep dorsal horn of the anesthetized monkey. Each neuron was identified by antidromic activation from the ventral posterior lateral nucleus of thalamus and classified by its initial responses to mechanical stimuli as wide dynamic range (WDR) or high-threshold (HT). Approximately half of the WDRs and one of the HTs responded weakly to histamine, some with a duration > 5 min, the maximal time allotted. WDRs but not HTs exhibited a significant increase in response to punctate stimulation after histamine consistent with their possible role in mediating histamine-induced hyperalgesia. Neither type of neuron exhibited significant changes in response to stroking, consistent with their unlikely role in mediating alloknesis. Furthermore, nearly all STT neurons exhibited vigorous and persistent responses to capsaicin, after which they became sensitized to stroking and to punctate stimulation. We conclude that the STT neurons in our sample are more likely to contribute to pain, allodynia, and hyperalgesia than to itch and alloknesis.


1979 ◽  
Vol 42 (5) ◽  
pp. 1370-1389 ◽  
Author(s):  
D. R. Kenshalo ◽  
R. B. Leonard ◽  
J. M. Chung ◽  
W. D. Willis

1. The responses of primate spinothalamic tract cells innervating the glabrous skin of the foot to noxious thermal stimuli have been examined. 2. Of the 41 cells studied, 98% responded to noxious thermal stimuli. Heating the cutaneous receptive field with a series of stimuli from 35 to 43, 47, and 50 degrees C produced a graded increase in discharge rate. The responses were characterized by an onset, which occurred after the temperature change had either slowed or stopped, an acceleration in the discharge up to a peak, and then an adaptation to a new base-line level. The time constants of adaptation were faster than those reported for C polymodal nociceptors. 3. No systematic differences were found in the responses to noxious thermal stimuli of cells with wide dynamic range receptive fields and of cells with narrow dynamic range, high-threshold receptive fields. There were also no differences in the responses of cells located in the marginal zone and of cells located in the neck of the dorsal horn. 4. The relationship between peak frequency and final skin temperature with a 30 s stimulus duration can best be described by a power function with an exponent of 2.1. An increase in the stimulus duration to 120 s resulted in an increase in the exponent of the power function to 3.2. 5. Repetition of the series of 30-s heat stimuli resulted in an increase in peak frequency, total impulse count, and background activity. Repetition of stimuli having a duration of 120 s produced an increase in the peak frequency at 43 and 45 degrees C, a smaller increase at 47 degrees C, and a decrease at 50 degrees C. Background activity was increased by the lower temperature stimuli, but was decreased following higher temperature stimuli. 6. In six additional cells, the skin was heated with three consecutive presentations at each temperature level (43, 45, 47, and 50 degrees C) for 30 s. No change was observed in the peak frequencies of the responses to successive stimuli of the same intensity. However, the exponent of the power function relating the average peak frequency for the six cells to changes in skin temperature was 3.9. This exponent was larger than that seen when two series of graded heat stimuli of 120 s duration were used, indicating more sensitization despite the fact the total time of exposure to noxious heat was less. 7. A role for both high-threshold and wide dynamic range spinothalamic cells in transmitting nociceptive information to the diencephalon is postulated.


2000 ◽  
Vol 84 (3) ◽  
pp. 1180-1185 ◽  
Author(s):  
Xijing Zhang ◽  
Christopher N. Honda ◽  
Glenn J. Giesler

Percutaneous upper cervical cordotomy continues to be performed on patients suffering from several types of severe chronic pain. It is believed that the operation is effective because it cuts the spinothalamic tract (STT), a primary pathway carrying nociceptive information from the spinal cord to the brain in humans. In recent years, there has been controversy regarding the location of STT axons within the spinal cord. The aim of this study was to determine the locations of STT axons within the spinal cord white matter of C2 segment in monkeys using methods of antidromic activation. Twenty lumbar STT cells were isolated. Eleven were classified as wide dynamic range neurons, six as high-threshold cells, and three as low-threshold cells. Eleven STT neurons were recorded in the deep dorsal horn and nine in superficial dorsal horn. The axons of the examined neurons were located at antidromic low-threshold points (<30 μA) within the contralateral lateral funiculus of C2. All low-threshold points were located ventral to the denticulate ligament, within the lateral half of the ventral lateral funiculus (VLF). None were found in the dorsal half of the lateral funiculus. The present findings support our previous suggestion that STT axons migrate ventrally as they ascend the length of the spinal cord. Also, the present findings indicate that surgical cordotomies that interrupt the VLF in C2 likely disrupt the entire lumbar STT.


1989 ◽  
Vol 61 (6) ◽  
pp. 1121-1130 ◽  
Author(s):  
W. S. Ammons

1. Spinothalamic tract (STT) neurons in the T10-L3 segments were studied for responses to renal and somatic stimuli. A total of 90 neurons was studied in 25 alpha-chloralose anesthetized monkeys (Macaca fascicularis). All neurons were antidromically activated from the ventral posterior lateral nucleus of the thalamus. 2. Sixty-two cells were excited by renal nerve stimulation and six inhibited. Probability of locating cells with renal input was greatest in T11-L1. Cells were located in laminae I and IV-VII; however, most were located in laminae V-VII. Antidromic latencies averaged 4.61 +/- 0.32 (SE) ms, whereas antidromic conduction velocities averaged 43.23 +/- 9.03 m/s. 3. Cells with excitatory renal input received A delta input only (36 cells) or A delta- and C-fiber inputs (26 cells). Stimulation of A delta renal afferent fibers evoked bursts of 1-10 spikes/stimulus [mean 3.6 +/- 0.9 spikes/stimulus] with onset latencies of 10.7 +/- 0.5 ms. Stimulation of C-fibers evoked 1.3 +/- 0.5 spikes/stimulus with onset latencies of 61.7 +/- 11.1 ms. Magnitude of responses to A delta-fiber stimulation was greatest in T12 and decreased both rostrally and caudally. Inhibitory responses to renal nerve stimulation required activation of renal C-fibers. 4. All cells that responded to stimulation of renal afferent fibers received convergent inputs from somatic structures. Forty-four cells were classified as wide dynamic range, 10 were high threshold, 12 were high-threshold cells with inhibitory input from hair, 2 were deep, and 2 were low threshold. Somatic receptive fields were large and located on the flank and abdomen and/or the upper hindlimb. Fourteen cells had inhibitory receptive fields located on the contralateral hindlimb or one of the forearms. 5. It is concluded that T11-L1 STT cells in the monkey respond reliably to renal nerve stimulation. Thoracolumbar STT cells may thus play a role in pain that results from renal disease. The locations of the somatic receptive fields of the cells suggest that they are responsible for the referral of renal pain to the flank and abdomen.


Sign in / Sign up

Export Citation Format

Share Document