Activation Kinetics of the Delayed Rectifier Potassium Current of Bullfrog Sympathetic Neurons

1998 ◽  
Vol 79 (5) ◽  
pp. 2345-2357 ◽  
Author(s):  
Kathryn G. Klemic ◽  
Dominique M. Durand ◽  
Stephen W. Jones

Klemic, Kathryn G., Dominique M. Durand, and Stephen W. Jones. Activation kinetics of the delayed rectifier potassium current of bullfrog sympathetic neurons. J. Neurophysiol. 79: 2345–2357, 1998. We examined the activation kinetics of the delayed rectifier K+ current of bullfrog sympathetic neurons, primarily using whole cell recording. On depolarization, currents activated with a sigmoid delay but did not show a Cole-Moore shift. The time course of activation differed systematically from an exponential raised to a power. At most voltages, a power of 2 gave the best overall fit but a power of 3 better described the initial delay. After the delay, the time course could be fitted by a single exponential. Time constants were 15–20 ms at 0 mV and decreased to a limiting τ = 7 ms at +50 to +100 mV. Tail currents were well fitted by single exponential functions and accelerated with hyperpolarization, from τ = 15–20 ms at 0 mV to τ = 2 ms at −110 mV ( e-fold for 40 mV). Eleven kinetic models were evaluated for their ability to describe the activation kinetics of the delayed rectifier. Hodgkin-Huxley–like models did not fit the data well. A linear model where voltage sensor movement is followed by a distinct channel opening step, allosteric models based on the Monod-Wyman–Changeux model, and an unconstrained C-C-C-O model could describe whole cell data from −100 to +40 mV. After including whole cell data at +60 and +80 mV, and a maximal p open of 0.8 from noise analysis of cell-attached patches, an allosteric model fit the data best, as the other models had difficulty describing qualitative features of the data. However, some more complex schemes (with additional free parameters) cannot be excluded. We propose the allosteric model as an empirical description of macroscopic ionic currents, and as a model worth considering in future studies on the molecular mechanism of potassium channel gating.

Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 405 ◽  
Author(s):  
Irene Huang ◽  
Yu-Luan Hsu ◽  
Chien-Chang Chen ◽  
Mei-Fang Chen ◽  
Zhi-Hong Wen ◽  
...  

Memory retrieval dysfunction is a symptom of schizophrenia, autism spectrum disorder (ASD), and absence epilepsy (AE), as well as an early sign of Alzheimer’s disease. To date, few drugs have been reported to enhance memory retrieval. Here, we found that a coral-derived natural product, excavatolide-B (Exc-B), enhances contextual memory retrieval in both wild-type and Cav3.2−/− mice via repressing the delayed rectifier potassium current, thus lowering the threshold for action potential initiation and enhancing induction of long-term potentiation (LTP). The human CACNA1H gene encodes a T-type calcium channel (Cav3.2), and its mutation is associated with schizophrenia, ASD, and AE, which are all characterized by abnormal memory function. Our previous publication demonstrated that Cav3.2−/− mice exhibit impaired contextual-associated memory retrieval, whilst their retrieval of spatial memory and auditory cued memory remain intact. The effect of Exc-B on enhancing the retrieval of context-associated memory provides a hope for novel drug development.


2013 ◽  
Vol 6 (5) ◽  
pp. 1002-1009 ◽  
Author(s):  
Christiaan C. Veerman ◽  
Arie O. Verkerk ◽  
Marieke T. Blom ◽  
Christine A. Klemens ◽  
Pim N.J. Langendijk ◽  
...  

EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
D Kiss ◽  
T Hezso ◽  
B Kurtan ◽  
R Veress ◽  
D Baranyai ◽  
...  

Abstract Funding Acknowledgements Supported by the ÚNKP-19-3 New National Excellence program of the Ministry for Innovation and Technology Introduction and aims Adaptation of the human heart to physical activity is a complex mechanism that includes the change of heart rate, morphology of the action potential (AP) among others. Stimulation of β-adrenergic receptors (β-AR) causes the shortening of the AP duration of ventricular cardiomyocytes. This is caused by the regulation of the potassium currents by the β-adrenergic signaling pathway. Our aim was to investigate the role of protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII) in the regulation of the slow component (IKs) of the delayed rectifier potassium current under β-AR activation. Methods Our experiments were performed on isolated canine cardiomyocytes from the left ventricle. The IKs current profile was determined under a ventricular AP. We used "AP voltage clamp" conditions in six experimental groups: Control (CTRL), β-AR stimulation with isoproterenol (ISO), CaMKII inhibition with KN-93 (KN-93), PKA inhibition with H-89 (H-89) β-AR stimulation with inhibited CaMKII (KN-93 + ISO), β-AR stimulation with inhibited PKA (H-89 + ISO). β-AR stimulation with inhibited CaMKII and PKA (KN-93 + H-89 + ISO) Results The highest current density of IKs was approximately 6 times higher and the charge delivered by IKs was about 8 times larger in the ISO group than in CTRL or KN-93 conditions. In the KN-93 + ISO group, IKs amplitude was about 60% smaller and delivered about half the total charge compared to the ISO group. In the H‑89 + ISO group, IKs was about 30% smaller and delivered 40% less total charge than in the ISO group. In the KN-93 + H-89 + ISO group the IKs did not changed sicnificantly. Conclusion Based on our results, CaMKII plays an important role in regulating IKs by β-AR stimulation.


1994 ◽  
Vol 71 (1) ◽  
pp. 317-329 ◽  
Author(s):  
K. J. Rennie ◽  
M. J. Correia

1. Type I vestibular hair cells were isolated from the cristae ampullares of the semicircular canals of the Mongolian gerbil (Meriones unguiculatus) and the white king pigeon (Columba livia). Dissociated type I cells were distinguished from type II hair cells by their neck to plate ratio (NPR) and their characteristic amphora shape. 2. The membrane properties of gerbil and pigeon type I hair cells were studied in whole-cell voltage- and current-clamp using the perforated patch technique with amphotericin B as the perforating agent. 3. In whole-cell current-clamp, the average zero-current potential, Vz, measured for pigeon type I hair cells, was -70 +/- 7 (SD) mV (n = 18) and -71 +/- 11 mV (n = 83) for gerbil type I hair cells. 4. At Vz, for both gerbil and pigeon type I hair cells, a potassium current (IKI) was > or = 50% activated. This current deactivated rapidly when the membrane potential was hyperpolarized below -90 mV. 5. IKI was blocked by externally applied 4-aminopyridine (4-AP) (5 mM) and by internally applied 20 mM tetraethylammonium (TEA). It was also reduced when 4 mM barium was present in the external solution. The degree of block by barium increased as the membrane potential became more positive. External cesium (5 mM) blocked the inward component of IKI. When IKI was pharmacologically blocked, Vz depolarized by approximately 40 mV. Therefore IKI appears to be a delayed rectifier and to set the more negative Vz noted for isolated type I hair cells when compared to isolated type II hair cells, which do not have IKI. 6. A second, smaller potassium current was present at membrane potential depolarizations above -40 mV. This current was blocked by 30-50 mM, externally applied TEA, 100 microM quinidine, 100 nM apamin, but not 100 nM charybdotoxin, indicating that this is a calcium-activated potassium current, IK(Ca), different from the maxi-K calcium-activated potassium current found in most other hair cells.


Sign in / Sign up

Export Citation Format

Share Document