Serotonin Modulates Glutamate Responses in Isolated Suprachiasmatic Nucleus Neurons

1999 ◽  
Vol 82 (2) ◽  
pp. 533-539 ◽  
Author(s):  
Jorge E. Quintero ◽  
Douglas G. McMahon

Two input pathways to the suprachiasmatic nucleus (SCN) of the hypothalamus are the glutamatergic retinohypothalamic tract and the serotonergic afferent from the midbrain raphe nucleus. To determine whether these two temporal signaling pathways can converge at the cellular level, we have investigated the effects of serotonin on glutamate-induced calcium responses of individual SCN neurons isolated in cell culture. Dispersed cultures were formed from the SCN of neonatal rats. The calcium indicator Fura-2 acetoxymethyl ester was used to assess the changes in [Ca2+]i by recording the 340-nm/380-nm excitation ratio. Application of glutamate (5 μM) to the culture caused a rapid (within 10 s) increase in the fluorescence ratio of neurons indicating a marked increase in the concentration of intracellular free calcium. However, when 5-hydroxytryptamine (5-HT; 5 μM) was coapplied with glutamate, 31% of neurons showed an overall 61% reduction in the peak of the glutamate-induced calcium increase. Application of the 5-HT7/1A receptor agonist, (±)-8-hydroxy-2-(di- n-propylamino)tetralin [(±)-8-OH-DPAT] (1 μM), also reduced the calcium elevation this time by 80% in 18% of the neurons tested. When the 5-HT7/2/1C receptor antagonist, ritanserin (800 nM), was coapplied with serotonin, it blocked modulation of the glutamate responses. Further support for the involvement of the 5-HT7receptor was provided by the ability of the adenylate cyclase activator, forskolin (10 μM), and the cAMP analogue, 8-Br cAMP (0.5 mM), to mimic the suppressive effect of serotonin. Blocking spike-mediated cell communication with tetrodotoxin (1 μM) did not prevent the serotonergic suppression of glutamate-induced responses. These results support the hypothesis that the serotonergic modulation of photic entraining signals can occur in SCN neurons.

1984 ◽  
Vol 219 (1) ◽  
pp. 149-158 ◽  
Author(s):  
R H Ashley ◽  
M J Brammer ◽  
R Marchbanks

The recently synthesized calcium indicator quin −2 was incorporated into synaptosomes from guinea-pig cerebral cortex following uptake and internal hydrolysis of quin −2 tetra-acetoxymethyl ester. Incubation in physiological media containing 1 mM- or 2 mM-CaCl2 led to equilibrium cytosolic ionized calcium concentrations of 85 +/- 10 nM and 205 +/- 5 nM respectively (mean +/- S.E.M. from eight and eighteen preparations respectively). Cytosolic Ca2+ was elevated following increases in external Ca2+ concentration, plasma membrane depolarization, mitochondrial inhibition, calcium ionophore addition or replacement of external sodium by lithium. Preliminary experiments were performed to assess changes in cytosolic Ca2+ accompanying the release of the neurotransmitter acetylcholine.


Author(s):  
Ji-da Dai ◽  
M. Joseph Costello ◽  
Lawrence I. Gilbert

Insect molting and metamorphosis are elicited by a class of polyhydroxylated steroids, ecdysteroids, that originate in the prothoracic glands (PGs). Prothoracicotropic hormone stimulation of steroidogenesis by the PGs at the cellular level involves both calcium and cAMP. Cell-to-cell communication mediated by gap junctions may play a key role in regulating signal transduction by controlling the transmission of small molecules and ions between adjacent cells. This is the first report of gap junctions in the PGs, the evidence obtained by means of SEM, thin sections and freeze-fracture replicas.


Author(s):  
Martin Poenie ◽  
Akwasi Minta ◽  
Charles Vorndran

The use of fura-2 as an intracellular calcium indicator is complicated by problems of rapid dye leakage and intracellular compartmentalization which is due to a probenecid sensitive anion transporter. In addition there is increasing evidence for localized microdomains of high calcium signals which may not be faithfully reported by fura-2.We have developed a new family of fura-2 analogs aimed at addressing some of these problems. These new indicators are based on a modified bapta which can be readily derivatized to produce fura-2 analogs with a variety of new properties. The modifications do not affect the chromophore and have little impact on the spectral and metal binding properties of the indicator. One of these new derivatives known as FPE3 is a zwitterionic analog of fura-2 that can be loaded into cells as an acetoxymethyl ester and whose retention in cells is much improved. The improved retention of FPE3 is important for both cuvettebased measurements of cell suspensions and for calcium imaging.


1991 ◽  
Vol 11 (5) ◽  
pp. 779-785 ◽  
Author(s):  
Daisuke Uematsu ◽  
Joel H. Greenberg ◽  
Nobuo Araki ◽  
Martin Reivich

The effects of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 and the dihydropyridine calcium antagonist nimodipine on NMDA-induced phenomena were investigated using an in vivo fluorometric technique with indo-1. Indo-1, a fluorescent cytosolic free calcium ([Ca2+]i) indicator, was loaded into the cat cortex approximately 500 μm in depth by super-fusion with the membrane-permeant indo-1 acetoxymethyl ester (indo-1-AM). Changes in [Ca2+]i signals (400 and 506 nm) and reduced nicotinamide adenine dinucleotide (NADH) fluorescence (464 nm) were simultaneously measured directly from the cortex during ultraviolet excitation (340 nm). Superfusion of 100 μM NMDA over the exposed cortex induced an elevation of the [Ca2+]i signal ratio (400/506 nm), biphasic changes in NAD/NADH redox state (initial oxidation followed by progressive reduction), and characteristic changes in the EEG (abrupt depression in amplitude followed by an excitatory pattern of 18–22 Hz poly spikes or sharp waves). These changes were completely blocked by treatment with MK-801 and reduced by nimodipine. The mechanism underlying the protective effects of systemically administered MK-801 on the NMDA-induced neuronal injury was verified in vivo.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Nika Taghdiri ◽  
Kevin R King ◽  
David Calcagno ◽  
Zhenxing Fu ◽  
Kenneth Huang ◽  
...  

Introduction: Tissue macrophages play diverse roles in the cardiovascular system during health and disease. They have diverse functions within tissues, but our understanding of their dynamics is limited because most macrophage characterization assays are destructive and have low temporal resolution. We asked whether these cells are dynamic and interconnected. Methods: Here, we describe experimental and analytical methods for measuring cell dynamics and inferring communication between cells in vitro and in vivo. We created a mouse (Csf1r-Cre x GCaMP5) expressing the Cre-inducible genetically encoded calcium indicator GCaMP5 under the regulation of the innate immune promoter, Csf1r, to non-destructively quantify high-frequency cell dynamics and differentiated them in culture using m-CSF. We developed custom image analysis routines and parameterization strategies for classifying calcium responses. Results: Our studies revealed that calcium reporter BMDMs display minimal fluctuations at baseline but exhibit a dynamic response to immunogenic DNA sensing. DNA-induced isolated cell injury and death, which precipitated cell communication that spread with a velocity of [9μm/s], consistent with an extracellular diffusion mechanism. We developed quantitative image analysis methods that corrected for random calcium fluctuations and identified statistically significant areas of correlated calcium changes suggestive of communication. An analytical pipeline enabled quantification of calcium spike dynamics and correlations of dynamic calcium profiles of single cell sharing a local microenvironment. This resulted in an “improbable synchrony” metric that allowed localization of communication in time and space. We adapted the pipeline for in vivo studies and tested them in a dorsal window chamber model using intravital microscopy. At 2Hz sampling frequency, we identified 27 potential communication events as they responded to complex microenvironmental cues in vivo. Conclusion: The experimental and analytical methods for inferring cell communication provide a new quantitative toolkit for investigating known as-yet undiscovered cell communication pathways.


Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 231-233 ◽  
Author(s):  
PD Lew ◽  
C Wollheim ◽  
RA Seger ◽  
T Pozzan

Abstract Cytoplasmic free calcium concentration (Ca2+)i was measured in neutrophils from patients with the classical X-linked form of chronic granulomatous disease (CGD) by trapping the fluorescent calcium indicator Quin 2 in intact cells. CGD neutrophils do not produce superoxide and are only slightly depolarized upon stimulation by the chemotactic peptide. N-formyl-methionyl-leucyl-phenylalanine (FMLP). The resting levels, as well as (Ca2+)i changes induced by FMLP in CGD cells, were quantitatively and kinetically similar to those observed in normal cells. We conclude that the defect in CGD cells is distal to, or independent of, the changes in (Ca2+)i induced by FMLP stimulation and that normal membrane depolarization does not seem to be necessary for receptor-mediated rise in free cytosolic calcium in human neutrophils.


1993 ◽  
Vol 265 (4) ◽  
pp. F487-F503 ◽  
Author(s):  
T. Inoue ◽  
M. Naruse ◽  
M. Nakayama ◽  
K. Kurokawa ◽  
T. Sato

The physiological role of oxytocin (OT) in the kidney is still unclear, although autoradiographic data have shown the existence of OT receptors in the rat kidney. We examined the effect of OT in the microperfused rabbit cortical collecting duct (CCD) by using conventional cable analysis and microscope photometry. On addition of 10(-9) M OT to the bath, the lumen-negative transepithelial voltage (VT) transiently increased and the transepithelial resistance (RT) and the fractional resistance of the apical membrane (FRA) (1st phase) both decreased. After this initial change, the lumen-negative VT gradually decreased below its baseline level and RT and FRA (second phase) both increased. These electrical changes were dose dependent and were prevented by the addition of 10(-5) M amiloride to the lumen. Although responses to OT were not prevented by 10(-9) M arginine vasopressin (AVP) or 10(-6) M of a V1-receptor antagonist (OPC-21268) or V2-receptor antagonist (OPC-31260), they were inhibited by the addition of the specific OT antagonist des-Gly-NH2-[d(CH2)3,Tyr(Me),Thr]OVT. Additional studies of intracellular free calcium ([Ca2+]i) revealed that 10(-8)-10(-6) M OT caused an increase in [Ca2+]i in CCD in a dose-dependent manner. Also, pretreatment with 2 x 10(-8) M bis-(aminophenoxy)ethane-tetraacetic acid-acetoxymethyl ester, an intracellular Ca2+ chelator, abolished the electrical and [Ca2+]i responses to OT. Pretreatment with 5 x 10(-4) M 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (CPT-cAMP) partially prevented the electrical responses to OT, thus reducing the decrease in lumen-negative VT below its basal level and the increase in RT after the 1st phase. These data show that OT affects the apical Na+ conductance of collecting duct cells through OT receptors distinct from the AVP receptors and that the effect of OT may, at least in part, be brought about by a mechanism(s) dependent on the increase in [Ca2+]i and cAMP production.


Sign in / Sign up

Export Citation Format

Share Document