GABAA and GABAC Receptors Have Contrasting Effects on Excitability in Superior Colliculus

1999 ◽  
Vol 82 (4) ◽  
pp. 2020-2023 ◽  
Author(s):  
Michael Pasternack ◽  
Mathias Boller ◽  
Belinda Pau ◽  
Matthias Schmidt

We have recently found that GABAC receptor subunit transcripts are expressed in the superficial layers of rat superior colliculus (SC). In the present study we used immunocytochemistry to demonstrate the presence of GABAC receptors in rat SC at protein level. We also investigated in acute rat brain slices the effect of GABAA and GABAC receptor agonists and antagonists on stimulus-evoked extracellular field potentials in SC. Electrical stimulation of the SC optic layer induced a biphasic, early and late, potential in the adjacent superficial layer. The late component was completely inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione or CoCl2, indicating that it was generated by postsynaptic activation. Muscimol, a potent GABAA and GABAC receptor agonist, strongly attenuated this postsynaptic potential at concentrations >10 μM. In contrast, the GABAC receptor agonist cis-aminocrotonic acid, as well as muscimol at lower concentrations (0.1–1 μM) increased the postsynaptic potential. This increase was blocked by (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid, a novel competitive antagonist of GABAC receptors. Our findings demonstrate the presence of functional GABAC receptors in SC and suggest a disinhibitory role of these receptors in SC neuronal circuitry.

1995 ◽  
Vol 12 (3) ◽  
pp. 573-588 ◽  
Author(s):  
Psyche Lee ◽  
William C. Hall

AbstractThis study of the tree shrew, Tupaia belangeri, provides evidence for an intracollicular pathway that arises in the superficial gray layer and terminates in the optic layer. As a first step, Nissl, myelin, and cytochrome oxidase stains were used to identify the layers of the superior colliculus in the tree shrew. Second, anterograde and retrograde axonal transport methods were used to determine relationships between laminar borders and patterns of connections. Intraocular injections of wheat germ agglutinin conjugated to horseradish peroxidase showed that the border between the superficial gray and optic layers in the tree shrew is marked by a sharp decrease in the density of retinotectal projections. The optic layer also could be distinguished from the subjacent intermediate gray layer by differences in connections. Of the two layers, only the intermediate gray layer received projections following injections of wheat germ agglutinin conjugated to horseradish peroxidase within substantia nigra pars reticulata. Similarly, following injections of horseradish peroxidase or biocytin in the paramedian pons, the intermediate gray but not the optic layer contained labeled cells of origin for the main premotor pathway from the tectum, the predorsal bundle. Next, cells in the superficial gray layer were intracellularly injected with biocytin in living brain slices. Axons were traced from narrow and wide field vertical cells in the deep part of the superficial gray layer to the gray matter surrounding the fiber fascicles of the optic layer. Small extracellular injections of biocytin in brain slices showed that the optic layer gray matter contains a population of stellate cells that are in position to receive the input from the superficial layer. Finally, small extracellular injections of biocytin in the intermediate gray layer filled cells that sent prominent apical dendrites into the optic layer, where they may be directly contacted by the superficial gray layer cells. Taken together, the results support the hypothesis that the optic layer is functionally distinct from its adjacent layers, and may provide a link in the transfer of information from the superficial, retinal recipient, to the intermediate, premotor, layer of the superior colliculus.


2008 ◽  
Vol 294 (5) ◽  
pp. R1435-R1444 ◽  
Author(s):  
Hakan S. Orer ◽  
Gerard L. Gebber ◽  
Susan M. Barman

We studied the changes in inferior cardiac sympathetic nerve discharge (SND) produced by unilateral microinjections of 5-hydroxytryptamine (5-HT) receptor agonists and antagonists into the ventrolateral medulla (VLM) of urethane-anesthetized, baroreceptor-denervated cats. Microinjection of the 5-HT2 receptor antagonist LY-53857 (10 mM) into either the rostral or caudal VLM significantly reduced ( P ≤ 0.05) the 10-Hz rhythmic component of basal SND without affecting its lower-frequency, aperiodic component. The selective depression of 10-Hz power was accompanied by a statistically significant decrease in mean arterial pressure (MAP). Microinjection of LY-53857 into the VLM also attenuated the increase in 10-Hz power that followed tetanic stimulation of depressor sites in the caudal medullary raphé nuclei. Microinjection of the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)2-amino-propane (DOI; 10 μM) into the VLM selectively enhanced 10-Hz SND, and intravenous DOI (1 mg/kg) partially reversed the reduction in 10-Hz SND produced by 5-HT2 receptor blockade in the VLM. Microinjection of the 5-HT1A receptor agonist, 8-hydroxy-2-(di- n-propylamino)tetralin (8-OHDPAT; 10 mM), into either the rostral or caudal VLM also selectively attenuated 10-Hz SND and significantly reduced MAP. The reduction in 10-Hz SND produced by 8-OHDPAT was partially reversed by intravenous WAY-100635 (1 mg/kg), which selectively blocks 5-HT1A receptors. These results support the view that serotonergic inputs to the VLM play an important role in expression of the 10-Hz rhythm in SND.


2005 ◽  
Vol 93 (1) ◽  
pp. 519-534 ◽  
Author(s):  
Masayuki Watanabe ◽  
Yasushi Kobayashi ◽  
Yuka Inoue ◽  
Tadashi Isa

To examine the role of competitive and cooperative neural interactions within the intermediate layer of superior colliculus (SC), we elevated the basal SC neuronal activity by locally injecting a cholinergic agonist nicotine and analyzed its effects on saccade performance. After microinjection, spontaneous saccades were directed toward the movement field of neurons at the injection site (affected area). For visually guided saccades, reaction times were decreased when targets were presented close to the affected area. However, when visual targets were presented remote from the affected area, reaction times were not increased regardless of the rostrocaudal level of the injection sites. The endpoints of visually guided saccades were biased toward the affected area when targets were presented close to the affected area. After this endpoint effect diminished, the trajectories of visually guided saccades remained modestly curved toward the affected area. Compared with the effects on endpoints, the effects on reaction times were more localized to the targets close to the affected area. These results are consistent with a model that saccades are triggered by the activities of neurons within a restricted region, and the endpoints and trajectories of the saccades are determined by the widespread population activity in the SC. However, because increased reaction times were not observed for saccades toward targets remote from the affected area, inhibitory interactions in the SC may not be strong enough to shape the spatial distribution of the low-frequency preparatory activities in the SC.


2007 ◽  
Vol 195 (4) ◽  
pp. 605-615 ◽  
Author(s):  
Anh Lê Dzung ◽  
Douglas Funk ◽  
Stephen Harding ◽  
Walter Juzytsch ◽  
Zhaoxia Li ◽  
...  

1980 ◽  
Vol 190 (2) ◽  
pp. 333-339 ◽  
Author(s):  
M C W Minchin

1. Protoveratrine A increased the release of gamma-amino[3H]butyrate from small slices of rat cerebral cortex. This effect increased with increasing protoveratrine concentration, reaching a maximum at 100 microM. 2. Removal of Ca2+ from the superfusing medium did not change the increase in release due to 10 microM-protoveratrine; however, the Ca2+ antagonists, compound D-600, La3+, Mn2+, Mg2+ and also high Ca2+ concentration inhibited the effect of the alkaloid, as did procaine. 3. Protoveratrine A increased the uptake of 22Na+ into the slices with a similar dose-response curve to that found for gamma-aminobutyrate release. For the most part, the substances that inhibited protoveratrine-stimulated gamma-aminobutyrate release also inhibited 22Na+ uptake, although the correlation was not perfect. 4. Although extracellular Ca2+ is not required for protoveratrine-induced gamma-aminobutyrate release, an increase in Na+ influx that is susceptible to inhibition by some Ca2+ antagonists does appear to be associated with this phenomenon. However, the possibility remains that changes in the free intracellular Ca2+ concentration may be important for transmitter release induced by depolarizing veratrum alkaloids.


1996 ◽  
Vol 76 (4) ◽  
pp. 2412-2422 ◽  
Author(s):  
G. S. Hollrigel ◽  
K. Toth ◽  
I. Soltesz

1. Whole cell patch-clamp and extracellular field recordings were obtained from granule cells of the dentate gyrus in 400-microns-thick brain slices of the adult rat to determine the actions of the intravenous general anesthetic 2,6-diisopropylphenol (propofol) on acute neuronal survival and preservation of synaptic integrity after amputation of dendrites (dendrotomy), and to determine the role of gamma-aminobutyric acid-A (GABAA)-receptor-mediated inhibition in the neuroprotective effects of propofol. The actions of propofol were compared with those exerted by another widely used intravenous general anesthetic, 5-ethyl-5-[1-methylbutyl]-2-thiobarbituric acid (thiopental). 2. Propofol (10 microM) increased the frequency (control: 5.9 +/- 0.9 Hz, mean +/- SE; propofol: 10.5 +/- 1.3 Hz) and the single-exponential decay time constant (tau D) (control: 4.5 +/- 0.2 ms; propofol: 15.3 +/- 1.5 ms) of miniature inhibitory postsynaptic currents (mIPSCs) recorded in control neurons. Thiopental (25 microM) also increased the tau D (14.3 +/- 0.9 ms) of mISPCs, but had no effect on mIPSC frequency. Both anesthetics potentiated mIPSCs at low concentrations (propofol: 5 microM; thiopental: 1 microM). Propofol and thiopental did not change the peak amplitude and rise times of mIPSCs. 3. Propofol (10 microM) was able to depress the excitability of control granule cells, as determined by the reduction in the amplitude of the orthodromic population spikes. This depression could be prevented by the GABAA receptor antagonist bicuculline (50 microM), indicating that propofol reduces excitability via GABAA receptor functions. 4. Propofol and thiopental were neuroprotectant (assessed by antidromic population responses 2-5 h after injury) if present before and during the amputation of the granule cell dendrites. The protective actions were dose dependent, and at high doses (propofol: 200 microM; thiopental: 400 microM) the anesthetics were as neuroprotective against dendrotomy-induced cell death as 2-amino 5-phosphovaleric acid (APV) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX). The protective effects of the anesthetics were completely blocked with the GABAA receptor antagonists picrotoxin or bicuculline, and were mimicked by the GABAA receptor agonist muscimol (100 microM). 5. Propofol, in contrast to APV and CNQX, could not prevent the dendrotomy-induced Ca(2+)-dependent and long-lasting changes in mIPSC decay kinetics (appearance of a double-exponential, prolonged decay). 6. The protective effects of the anesthetics and those of APV and CNQX on neuronal survival were not significant when the drugs were applied after dendrotomy, indicating that dendrotomy carried out 150-200 microns from the soma without neuroprotective agents rapidly induces irreversible acute degeneration in most injured neurons. The failure to rescue cells from dendrotomy-induced injury did not result from a decreased sensitivity of the GABAA receptors to the anesthetics, because the potentiating effects of the anesthetics on mIPSCs from control and dendrotomized neurons were not different. 7. These data indicate that propofol potentiates synaptic inhibition pre- and postsynaptically, and, when present during dendrotomy, it can protect neurons from acute mechanical-injury induced cell death via potentiation of GABAA receptor functions. However, propofol fails to provide neuroprotection against dendrotomy-induced changes in synaptic physiology.


Sign in / Sign up

Export Citation Format

Share Document