Pattern Generation in the Buccal System of Freely BehavingLymnaea stagnalis

1999 ◽  
Vol 82 (6) ◽  
pp. 3378-3391 ◽  
Author(s):  
Rene F. Jansen ◽  
Anton W. Pieneman ◽  
Andries ter Maat

Central pattern generators (CPGs) are neuronal circuits that drive active repeated movements such as walking or swimming. Although CPGs are, by definition, active in isolated central nervous systems, sensory input is thought play an important role in adjusting the output of the CPGs to meet specific behavioral requirements of intact animals. We investigated, in freely behaving snails ( Lymnaea stagnalis), how the buccal CPG is used during two different behaviors, feeding and egg laying. Analysis of the relationship between unit activity recorded from buccal nerves and the movements of the buccal mass showed that electrical activity in laterobuccal/ventrobuccal (LB/VB) nerves was as predicted from in vitro data, but electrical activity in the posterior jugalis nerve was not. Autodensity and interval histograms showed that during feeding the CPG produces a much stronger rhythm than during egg laying. The phase relationship between electrical activity and buccal movement changed little between the two behaviors. Fitting the spike trains recorded during the two behaviors with a simple model revealed differences in the patterns of electrical activity produced by the buccal system during the two behaviors investigated. During egg laying the bursts contained less spikes, and the number of spikes per burst was significantly more variable than during feeding. The time between two bursts of in a spike train was longer during egg laying than during feeding. The data show what the qualitative and quantitative differences are between two motor patterns produced by the buccal system of freely behaving Lymnaea stagnalis.

1997 ◽  
Vol 78 (6) ◽  
pp. 3415-3427 ◽  
Author(s):  
Rene F. Jansen ◽  
Anton W. Pieneman ◽  
Andries ter Maat

Jansen, Rene F., Anton W. Pieneman, and Andries ter Maat. Behavior-dependent activities of a central pattern generator in freely behaving Lymnaea stagnalis. J. Neurophysiol. 78: 3415–3427, 1997. Cyclic or repeated movements are thought to be driven by networks of neurons (central pattern generators) that are dynamic in their connectivity. During two unrelated behaviors (feeding and egg laying), we investigated the behavioral output of the buccal pattern generator as well as the electrical activity of a pair of identified interneurons that have been shown to be involved in setting the level of activity of this pattern generator (PG). Analysis of the quantile plots of the parameters that describe the behavior (movements of the buccal mass) reveals that during egg laying, the behavioral output of the PG is different compared with that during feeding. Comparison of the average durations of the different parts of the buccal movements showed that during egg laying, the duration of one specific part of buccal movement is increased. Correlated with these changes in the behavioral output of the PG were changes in the firing rate of the cerebral giant neurons (CGC), a pair of interneurons that have been shown to modulate the activity of the PG by means of multiple synaptic contacts with neurons in the buccal ganglion. Interval- and autocorrelation histograms of the behavioral output and CGC spiking show that both the PG output and the spiking properties of the CGCs are different when comparing egg-laying animals with feeding animals. Analysis of the timing relations between the CGCs and the behavioral output of the PG showed that both during feeding and egg laying, the electrical activity of the CGCs is largely in phase with the PG output, although small changes occur. We discuss how these results lead to specific predictions about the kinds of changes that are likely to occur when the animal switches the PG from feeding to egg laying and how the hormones that cause egg laying are likely to be involved.


1998 ◽  
Vol 79 (5) ◽  
pp. 2643-2652 ◽  
Author(s):  
E. Bracci ◽  
M. Beato ◽  
A. Nistri

Bracci, E., M. Beato, and A. Nistri. Extracellular K+ induces locomotor-like patterns in the rat spinal cord in vitro: comparison with NMDA or 5-HT induced activity. J. Neurophysiol. 79: 2643–2652, 1998. Bath-application of increasing concentrations of extracellular K+ elicited alternating motor patterns recorded from pairs of various lumbar ventral roots of the neonatal rat (0–2 days old) spinal cord in vitro. The threshold concentration of K+ for this effect was 7.9 ± 0.8 mM (mean ± SD). The suprathreshold concentration range useful to evoke persistent motor patterns (lasting ≥10 min) was very narrow (∼1 mM) as further increments elicited only rhythmic activity lasting from 20 s to a few minutes. On average, the fastest period of rhythmic patterns was 1.1 ± 0.3 s. Intracellular recording from lumbar motoneurons showed that raised extracellular K+ elicited membrane potential oscillations with superimposed repetitive firing. In the presence of N-methyl-d-aspartate (NMDA) or non-NMDA receptor blockers [ R(−)-2-amino-phosphonovaleric acid or 6-cyano-7-nitroquinoxaline-2,3-dione, respectively] extracellular K+ increases could still induce motor patterns although the threshold concentration was raised. Serotonin (5-HT) also induced alternating motor patterns (threshold 15 ± 7 μM) that were consistently slower than those induced by high K+ or NMDA. Ritanserin (1 μM) prevented the locomotor-like activity of 5-HT but not that of high K+ provided the concentration of the latter was further increased. Subthreshold concentrations of K+ became effective in the presence of subthreshold doses of 5-HT or NMDA, indicating mutual facilitation between these substances. The fastest pattern frequency was observed by raising K+ or by adding NMDA. In the presence of 5-HT, the pattern frequency was never as fast even if NMDA (or high K+) was coapplied. Furthermore, application of 5-HT significantly slowed down the K+- or NMDA-induced rhythm, an effect strongly potentiated in the presence of ritanserin. It is suggested that the operation of the spinal locomotor network was activated by rises in extracellular K+, which presumably led to a broad increase in neuronal excitability. Whenever the efficiency of excitatory synaptic transmission was diminished (for example by glutamate receptor antagonism), a larger concentration of K+ was required to evoke locomotor-like patterns. The complex effect (comprising stimulation and inhibition) of 5-HT on alternating pattern generation appeared to result from a dual action of this substance on the spinal locomotor network.


1993 ◽  
Vol 178 (1) ◽  
pp. 251-259 ◽  
Author(s):  
G. P. Ferguson ◽  
A. W. Pieneman ◽  
R. F. Jansen ◽  
A. Ter Maat

The egg-laying behaviour of gastropod molluscs is controlled by peptidergic neuroendocrine cells and has provided an important experimental system for behavioural neurobiology. The genes that code for multiple peptides have been sequenced and the peptides themselves have been identified, thus enabling us to investigate how they act on the nervous system to produce the overt behavioural pattern (reviewed by Geraerts et al. 1988). The two animals that have been studied most extensively are the opisthobranch Aplysia californica and the pulmonate Lymnaea stagnalis. In both cases, the peptidergic neurones controlling egg laying are normally electrically silent (both in vivo and in vitro; Kupfermann, 1967; Pinsker and Dudek, 1977; Kits, 1980; Ter Maat et al. 1986) and produce multiple peptides (Rothman et al. 1983; Geraerts et al. 1985; Sigvardt et al. 1986), which are cleaved from a common protein precursor (Scheller et al. 1983; Vreugdenhil et al. 1988). Before egg laying, the cells produce a long-lasting discharge of action potentials (Pinsker and Dudek, 1977; Ter Maat et al. 1986). This electrical discharge initiates egg-laying behaviour, and during it the peptides (one of which initiates ovulation) are released into the blood. The demonstration, in Aplysia californica, that these peptides could have various effects on the activity of central neurones (reviewed by Mayeri and Rothman, 1985) led to the hypothesis that egg-laying behaviour is a neuroendocrine fixed action pattern controlled and coordinated by the concerted actions of the released peptides (Scheller and Axel, 1984). This hypothesis is also thought to apply to Lymnaea stagnalis (Vreugdenhil et al. 1988) because of the structural similarities between precursors of Aplysia californica and Lymnaea stagnalis egg-laying hormones. In this paper we investigate how the sequence of the various components of the egg-laying behaviour pattern is achieved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
István Fodor ◽  
Réka Svigruha ◽  
Zsolt Bozsó ◽  
Gábor K. Tóth ◽  
Tomohiro Osugi ◽  
...  

AbstractIn vertebrates, gonadotropin-releasing hormone (GnRH) peptide is the central mediator of reproduction. Homologous peptides have previously also been identified in molluscan species. However, emerging evidence suggests that these molecules might serve diverse regulatory functions and proposes to consider them as corazonin (CRZ). We previously isolated the full-length cDNA of the invGnRH/CRZ peptide (termed ly-GnRH/CRZ) in the well-established invertebrate model species, the great pond snail Lymnaea stagnalis; however, its predicted functions remain to be verified. In this study, we first confirmed the presence of the deduced active peptide from the central nervous system of L. stagnalis. Further, we performed in vivo and in vitro studies to explore the functions of ly-GnRH/CRZ. Injection of sexually mature specimens with synthetic active peptide had an inhibitory effect on locomotion and an acceleratory effect on egg-laying, but had no effect on feeding. The previously predicted modulatory effect of ly-GnRH/CRZ was supported by its identified co-localization with serotonin on the surface of the heart atria. Lastly, we demonstrated not only the presence of ly-GnRH/CRZ in the penial complex but also that ly-GnRH/CRZ-containing neurons project to the efferent penis nerve, suggesting ly-GnRH/CRZ may directly modulate the motor output of this peripheral tissue. Overall, our findings strongly support that ly-GnRH/CRZ is a multifunctional neuropeptide. These results contribute to the understanding of the GnRH superfamily and, more broadly, disciplines such as comparative endocrinology and neurobiology.


Author(s):  
Daria Monaldi ◽  
Dante Rotili ◽  
Julien Lancelot ◽  
Martin Marek ◽  
Nathalie Wössner ◽  
...  

The only drug for treatment of Schistosomiasis is Praziquantel, and the possible emergence of resistance makes research on novel therapeutic agents necessary. Targeting of Schistosoma mansoni epigenetic enzymes, which regulate the parasitic life cycle, emerged as promising approach. Due to the strong effects of human Sirtuin inhibitors on parasite survival and reproduction, Schistosoma sirtuins were postulated as therapeutic targets. In vitro testing of synthetic substrates of S. mansoni Sirtuin 2 (SmSirt2) and kinetic experiments on a myristoylated peptide demonstrated lysine long chain deacylation as an intrinsic SmSirt2 activity for the first time. Focused in vitro screening of the GSK Kinetobox library and structure-activity relationships (SAR) of identified hits, led to the first SmSirt2 inhibitors with activity in the low micromolar range. Several SmSirt2 inhibitors showed potency against both larval schistosomes (viability) and adult worms (pairing, egg laying) in culture without general toxicity to human cancer cells.<br>


Author(s):  
Astrid A. Prinz

This chapter begins by defining central pattern generators (CPGs) and proceeds to focus on one of their core components, the timing circuit. After arguing why invertebrate CPGs are particularly useful for the study of neuronal circuit operation in general, the bulk of the chapter then describes basic mechanisms of CPG operation at the cellular, synaptic, and network levels, and how different CPGs combine these mechanisms in various ways. Finally, the chapter takes a semihistorical perspective to discuss whether or not the study of invertebrate CPGs has seen its prime and what it has contributed—and may continue to offer—to a wider understanding of neuronal circuits in general.


1980 ◽  
Vol 58 (11) ◽  
pp. 2163-2166 ◽  
Author(s):  
F. Edward Dudek ◽  
Amd Bonnie Soutar ◽  
Stephen S. Tobe

Aspects of egg laying by isolated Aplysia californica and egg release from ovotestis fragments were compared under laboratory conditions. The volume of eggs laid per episode increased as a function of time since the previous episode of egg laying. Egg output in vivo and egg release in vitro were maximal in autumn and minimal in spring, but a factor in the parietovisceral ganglion evoked egg release from ovotestis fragments throughout the year. These data are consistent with previous studies which have suggested that the effects of season and egg-laying history on egg laying involve substantial changes in the ovotestis.


1996 ◽  
Vol 76 (3) ◽  
pp. 687-717 ◽  
Author(s):  
E. Marder ◽  
R. L. Calabrese

Rhythmic movements are produced by central pattern-generating networks whose output is shaped by sensory and neuromodulatory inputs to allow the animal to adapt its movements to changing needs. This review discusses cellular, circuit, and computational analyses of the mechanisms underlying the generation of rhythmic movements in both invertebrate and vertebrate nervous systems. Attention is paid to exploring the mechanisms by which synaptic and cellular processes interact to play specific roles in shaping motor patterns and, consequently, movement.


Sign in / Sign up

Export Citation Format

Share Document