parasite survival
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 91)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 15 (1) ◽  
pp. 60
Author(s):  
Helenita C. Quadros ◽  
Mariana C. B. Silva ◽  
Diogo R. M. Moreira

Plasmodium has evolved to regulate the levels and oxidative states of iron protoporphyrin IX (Fe-PPIX). Antimalarial endoperoxides such as 1,2,4-trioxane artemisinin and 1,2,4-trioxolane arterolane undergo a bioreductive activation step mediated by heme (FeII-PPIX) but not by hematin (FeIII-PPIX), leading to the generation of a radical species. This can alkylate proteins vital for parasite survival and alkylate heme into hematin–drug adducts. Heme alkylation is abundant and accompanied by interconversion from the ferrous to the ferric state, which may induce an imbalance in the iron redox homeostasis. In addition to this, hematin–artemisinin adducts antagonize the spontaneous biomineralization of hematin into hemozoin crystals, differing strikingly from artemisinins, which do not directly suppress hematin biomineralization. These hematin–drug adducts, despite being devoid of the peroxide bond required for radical-induced alkylation, are powerful antiplasmodial agents. This review addresses our current understanding of Fe-PPIX as a bioreductive activator and molecular target. A compelling pharmacological model is that by alkylating heme, endoperoxide drugs can cause an imbalance in the iron homeostasis and that the hematin–drug adducts formed have strong cytocidal effects by possibly reproducing some of the toxifying effects of free Fe-PPIX. The antiplasmodial phenotype and the mode of action of hematin–drug adducts open new possibilities for reconciliating the mechanism of endoperoxide drugs and for malaria intervention.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010140
Author(s):  
Aracely A. Romero ◽  
Sarah A. Cobb ◽  
Julie N. R. Collins ◽  
Steven A. Kliewer ◽  
David J. Mangelsdorf ◽  
...  

Schistosomes infect over 200 million of the world’s poorest people, but unfortunately treatment relies on a single drug. Nuclear hormone receptors are ligand-activated transcription factors that regulate diverse processes in metazoans, yet few have been functionally characterized in schistosomes. During a systematic analysis of nuclear receptor function, we found that an FTZ-F1-like receptor was essential for parasite survival. Using a combination of transcriptional profiling and chromatin immunoprecipitation (ChIP), we discovered that the micro-exon gene meg-8.3 is a transcriptional target of SmFTZ-F1. We found that both Smftz-f1 and meg-8.3 are required for esophageal gland maintenance as well as integrity of the worm’s head. Together, these studies define a new role for micro-exon gene function in the parasite and suggest that factors associated with the esophageal gland could represent viable therapeutic targets.


2021 ◽  
Author(s):  
Alexandra Blancke Soares ◽  
Jan Stäcker ◽  
Svenja Schwald ◽  
Wieteke Hoijmakers ◽  
Nahla Galal Metwally ◽  
...  

AbstractIntracellular malaria blood stage parasites remodel their host cell, a process essential for parasite survival and a cause of pathology in malaria infections. Host cell remodeling depends on the export of different classes of exported parasite proteins into the infected red blood cell (RBC). Here we show that members of a recently discovered group of difficult to predict exported proteins harbor an N-terminal export domain, similar to other classes of exported proteins, indicating that this is a common theme among all classes of exported proteins. For one such protein, MSRP6 (MSP-7 related protein 6), we identified a second, untypical export-mediating domain that corresponded to its MSP7-like region. In addition to its function in export, this domain also mediated attachment to the Maurer’s clefts, prominent parasite-induced structures in the host cell where MSRP6 is located. Using BioID with the Maurer’s clefts attachment domain of MSRP6 to identify interactors and compartment neighbors in live parasites we discovered a novel complex of proteins at the Maurer’s clefts. We show that this complex is necessary for the anchoring and maintaining the structural integrity of the Maurer’s clefts. The Maurer’s clefts are believed to be involved in the transport of the major virulence factor PfEMP1 to the host cell surface where it mediates cytoadherence of infected RBCs to endothelial cells, a main reason for the importance of host cell modifications for parasite virulence in the human host. Taking advantage of MSRP6 complex mutants and IT4 parasites that we modified to express only one specific PfEMP1 we find that abolishing Maurer’s clefts anchoring was neither needed for PfEMP1 transport to the host cell surface nor for cytoadherence. Altogether, this work reveals parasite proteins involved in Maurer’s clefts anchoring and maintenance and unexpectedly finds that these functions are dispensable for virulence factor transport and surface display.


2021 ◽  
Vol 2 ◽  
Author(s):  
Erich Loza Telleria ◽  
Daisy Aline Azevedo-Brito ◽  
Barbora Kykalová ◽  
Bruno Tinoco-Nunes ◽  
André Nóbrega Pitaluga ◽  
...  

Phlebotomine sand flies (Diptera, Psychodidae) belonging to the Lutzomyia genus transmit zoonoses in the New World. Lutzomyia longipalpis is the main vector of Leishmania infantum, which is the causative agent of visceral leishmaniasis in Brazil. To identify key molecular aspects involved in the interaction between vector and pathogens and contribute to developing disease transmission controls, we investigated the sand fly innate immunity mediated by the Janus kinase/signal transducer and activator of transcription (Jak-STAT) pathway in response to L. infantum infection. We used two study models: L. longipalpis LL5 embryonic cells co-cultured with L. infantum and sand fly females artificially infected with the parasite. We used qPCR to follow the L. longipalpis gene expression of molecules involved in the Jak-STAT pathway. Also, we modulated the Jak-STAT mediated immune response to understand its role in Leishmania parasite infection. For that, we used RNAi to silence the pathway regulators, protein inhibitor of activated STATs (PIAS) in LL5 cells, and STAT in adult females. In addition, the pathway suppression effect on parasite development within the vector was assessed by light microscopy in late-phase infection. The silencing of the repressor PIAS in LL5 cells led to a moderate increase in a protein tyrosine phosphatase 61F (PTP61F) expression. It suggests a compensatory regulation between these two repressors. L. infantum co-culture with LL5 cells upregulated repressors PIAS, suppressor of cytokine signaling (SOCS), and PTP61F. It also downmodulated virus-induced RNA-1 (VIR-1), a pathway effector, indicating that the parasite could repress the Jak-STAT pathway in LL5 cells. In Leishmania-infected L. longipalpis females, STAT and the antimicrobial peptide attacin were downregulated on the third day post-infection, suggesting a correlation that favors the parasite survival at the end of blood digestion in the sand fly. The antibiotic treatment of infected females showed that the reduction of gut bacteria had little effect on the Jak-STAT pathway regulation. STAT gene silencing mediated by RNAi reduced the expression of inducible nitric oxide synthase (iNOS) and favored Leishmania growth in sand flies on the first day post-infection. These results indicate that STAT participated in the iNOS regulation with subsequent effect on parasite survival.


2021 ◽  
pp. 102523
Author(s):  
Seyedmousa Motavallihaghi ◽  
Iraj Khodadadi ◽  
Farjam Goudarzi ◽  
Saied Afshar ◽  
Ali Ehsan Shahbazi ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 2334
Author(s):  
Christine E. Broster Reix ◽  
Célia Florimond ◽  
Anne Cayrel ◽  
Amélie Mailhé ◽  
Corentin Agnero-Rigot ◽  
...  

Background: In most trypanosomes, endo and exocytosis only occur at a unique organelle called the flagellar pocket (FP) and the flagellum exits the cell via the FP. Investigations of essential cytoskeleton-associated structures located at this site have revealed a number of essential proteins. The protein TbBILBO1 is located at the neck of the FP in a structure called the flagellar pocket collar (FPC) and is essential for biogenesis of the FPC and parasite survival. TbMORN1 is a protein that is present on a closely linked structure called the hook complex (HC) and is located anterior to and overlapping the collar. TbMORN1 is essential in the bloodstream form of T. brucei. We now describe the location and function of BHALIN, an essential, new FPC-HC protein. Methodology/Principal Findings: Here, we show that a newly characterised protein, BHALIN (BILBO1 Hook Associated LINker protein), is localised to both the FPC and HC and has a TbBILBO1 binding domain, which was confirmed in vitro. Knockdown of BHALIN by RNAi in the bloodstream form parasites led to cell death, indicating an essential role in cell viability. Conclusions/Significance: Our results demonstrate the essential role of a newly characterised hook complex protein, BHALIN, that influences flagellar pocket organisation and function in bloodstream form T. brucei parasites.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1457
Author(s):  
Monica Florin-Christensen ◽  
Sarah N. Wieser ◽  
Carlos E. Suarez ◽  
Leonhard Schnittger

Human babesiosis caused by the intraerythrocytic apicomplexan Babesia microti is an expanding tick-borne zoonotic disease that may cause severe symptoms and death in elderly or immunocompromised individuals. In light of an increasing resistance of B. microti to drugs, there is a lack of therapeutic alternatives. Species-specific proteases are essential for parasite survival and possible chemotherapeutic targets. However, the repertoire of proteases in B. microti remains poorly investigated. Herein, we employed several combined bioinformatics tools and strategies to organize and identify genes encoding for the full repertoire of proteases in the B. microti genome. We identified 64 active proteases and 25 nonactive protease homologs. These proteases can be classified into cysteine (n = 28), serine (n = 21), threonine (n = 14), asparagine (n = 7), and metallopeptidases (n = 19), which, in turn, are assigned to a total of 38 peptidase families. Comparative studies between the repertoire of B. bovis and B. microti proteases revealed differences among sensu stricto and sensu lato Babesia parasites that reflect their distinct evolutionary history. Overall, this data may help direct future research towards our understanding of the biology and pathogenicity of Babesia parasites and to explore proteases as targets for developing novel therapeutic interventions.


Author(s):  
Heloisa D’Avila ◽  
Núbia Pereira de Souza ◽  
Ana Luíza da Silva Albertoni ◽  
Laíris Cunha Campos ◽  
Pollianne Garbero Rampinelli ◽  
...  

Chagas disease is a major public health problem, especially in the South and Central America region. Its incidence is related to poverty and presents a high rate of morbidity and mortality. The pathogenesis of Chagas disease is complex and involves many interactive pathways between the hosts and the Trypanosoma cruzi. Several factors have been implicated in parasite-host interactions, including molecules secreted by infected cells, lipid mediators and most recent, extracellular vesicles (EVs). The EVs of T. cruzi (EVsT) were reported for the first time in the epimastigote forms about 42 years ago. The EVsT are involved in paracrine communication during the infection and can have an important role in the inflammatory modulation and parasite escape mechanism. However, the mechanisms by which EVs employ their pathological effects are not yet understood. The EVsT seem to participate in the activation of macrophages via TLR2 triggering the production of cytokines and a range of other molecules, thus modulating the host immune response which promotes the parasite survival. Moreover, new insights have demonstrated that EVsT induce lipid body formation and PGE2 synthesis in macrophages. This phenomenon is followed by the inhibition of the synthesis of pro-inflammatory cytokines and antigen presentation, causing decreased parasitic molecules and allowing intracellular parasite survival. Therefore, this mini review aims to discuss the role of the EVs from T. cruzi as well as its involvement in the mechanisms that regulate the host immune response in the lipid metabolism and its significance for the Chagas disease pathophysiology.


2021 ◽  
Vol 22 (19) ◽  
pp. 10878
Author(s):  
Priscilla Masamba ◽  
Abidemi Paul Kappo

Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.


2021 ◽  
Author(s):  
Avantika I. Ahiya ◽  
Suyash Bhatnagar ◽  
Joanne Morrisey ◽  
Josh R. Beck ◽  
Akhil B. Vaidya

AbstractPlasmodium spp. lack de novo cholesterol synthetic pathways and can only scavenge it from their host erythrocyte. Here we report that depletion of cholesterol from the erythrocyte plasma membrane by methyl-β-cyclodextrin (MBCD) has dramatic consequences. The removal of cholesterol results in invasion defects as well as inhibition of parasite development through the intra-erythrocytic cycle. These defects could be rescued by reconstitution with cholesterol and desmosterol but not with epicholesterol. By using live microscopy of fluorescently tagged trophozoite stage parasites, we detected rapid expulsion of the parasites from erythrocyte when exposed to MBCD for just 30 mins. Strikingly, the parasites transition from being intra-erythrocytic to extracellular within 10 seconds and do so without rupturing the erythrocyte membrane. These extruded parasites were still surrounded by the parasitophorous vacuolar membrane (PVM) and remained tethered to the erythrocyte. Electron microscopy revealed that although extracellular parasites retained their PVM, it was heavily compromised. Treatment with antimalarials that disrupt cholesterol homeostasis prior to MBCD exposure prevented the extrusion of trophozoites. These results reveal importance of cholesterol during the intra-erythrocytic development of P. falciparum and the dramatic consequences resulting from tampering with cholesterol content in the infected erythrocyte. These findings suggest dynamic nature of cholesterol within the infected erythrocyte that is critical for parasite survival.


Sign in / Sign up

Export Citation Format

Share Document