Neuronal Activity in the Primate Prefrontal Cortex in the Process of Motor Selection Based on Two Behavioral Rules

2000 ◽  
Vol 83 (4) ◽  
pp. 2355-2373 ◽  
Author(s):  
Eiji Hoshi ◽  
Keisetsu Shima ◽  
Jun Tanji

This study examined neuronal activity in the prefrontal cortex (PF) involved in the process of motor selection in accordance with two behavioral rules. We trained two monkeys to select a target based on the integration of memorized and current sensory information. Initially, a sample cue (triangle or circle) appeared at one of three locations (top, left, or right) for 1 s. After a 3-s delay, one of two types of choice cue appeared. The first type asked the monkeys to reach for a target by matching the location (location-matching task). The second type asked the monkeys to reach for a target by matching the shape (shape-matching task). The choice cue for location matching consisted of either three circles or three triangles, and the choice cue for shape matching consisted of a circle and a triangle. When the color of the choice cue changed from red to green 1.5 s later (GO signal), the monkeys touched the correct object to obtain a reward. We found cue-, delay-, choice-, and movement-related neuronal activity in the lateral prefrontal cortex. During the sample cue presentation and delay periods, we found selective neuronal activity for the location or shape of the sample cue. Shape-selective neurons were located more anteriorly in the ventral bank of the principal sulcus and inferior convexity area, whereas location-selective neurons were more posteriorly. After the choice cue appeared, we found three main types of neuronal activity in the critical period when the subject selected the future target: 1) activity reflecting past sensory information (the location or shape of the sample cue presented 3 s earlier), 2) activity selective for the configuration of the current choice cue, and 3) activity reflecting the properties (location or shape) of the future target. During the motor-response period, we found neuronal activity selective for the location or shape of the reaching target. When muscimol was microinjected into the ventral bank of principal sulcus and inferior convexity area, the performance of both tasks was impaired. Furthermore, we found that the wealth of neuronal activity in the PF that seemed to play a role in motor selection was rarely seen in the primary motor cortex.

1998 ◽  
Vol 80 (6) ◽  
pp. 3392-3397 ◽  
Author(s):  
Eiji Hoshi ◽  
Keisetsu Shima ◽  
Jun Tanji

Hoshi, Eiji, Keisetsu Shima, and Jun Tanji. Task-dependent selectivity of movement-related neuronal activity in the primate prefrontal cortex. J. Neurophysiol. 80: 3392–3397, 1998. We studied movement-related neuronal activity in the dorsolateral prefrontal cortex from the perspective of a general role for the prefrontal cortex in controlling motor behavior to achieve a specific goal according to the requirements of a given task. Monkeys were trained to perform two delayed motor tasks. The first task involved reaching for a target that matched the shape of a cue. The second task involved reaching for a target that matched the location of the cue. A majority (54%) of 175 movement-related prefrontal neurons exhibited preference for either the target shape or the type of task requirements. Sixty-four neurons (36%) were selectively active while reaching for a circle or a triangle. On the other hand, the activity of 59 neurons (34%) depended on whether the task required matching the shape or the location. These properties, characterizing the movement-related neuronal activity in the prefrontal cortex, rarely were found in the arm area of the primary motor cortex. Only 1 of 130 movement-related neurons (0.8%) showed task selectivity, and none showed target-shape selectivity.


Author(s):  
Edita Poljac ◽  
Ab de Haan ◽  
Gerard P. van Galen

Two experiments investigated the way that beforehand preparation influences general task execution in reaction-time matching tasks. Response times (RTs) and error rates were measured for switching and nonswitching conditions in a color- and shape-matching task. The task blocks could repeat (task repetition) or alternate (task switch), and the preparation interval (PI) was manipulated within-subjects (Experiment 1) and between-subjects (Experiment 2). The study illustrated a comparable general task performance after a long PI for both experiments, within and between PI manipulations. After a short PI, however, the general task performance increased significantly for the between-subjects manipulation of the PI. Furthermore, both experiments demonstrated an analogous preparation effect for both task switching and task repetitions. Next, a consistent switch cost throughout the whole run of trials and a within-run slowing effect were observed in both experiments. Altogether, the present study implies that the effects of the advance preparation go beyond the first trials and confirms different points of the activation approach ( Altmann, 2002) to task switching.


Author(s):  
Ronald H Stevens ◽  
Trysha L Galloway

Uncertainty is a fundamental property of neural computation that becomes amplified when sensory information does not match a person’s expectations of the world. Uncertainty and hesitation are often early indicators of potential disruption, and the ability to rapidly measure uncertainty would have implications for future educational and training efforts by targeting reflective discussions about past actions, supporting in-progress corrections, and generating forecasts about future disruptions. An approach is described combining neurodynamics and machine learning to provide quantitative measures of uncertainty. Models of neurodynamic information derived from electroencephalogram (EEG) brainwaves have provided detailed neurodynamic histories of US Navy submarine navigation team members. Persistent periods (25–30 s) of neurodynamic information were seen as discrete peaks when establishing the submarine’s position and were identified as periods of uncertainty by an artificial intelligence (AI) system previously trained to recognize the frequency, magnitude, and duration of different patterns of uncertainty in healthcare and student teams. Transition matrices of neural network states closely predicted the future uncertainty of the navigation team during the three minutes prior to a grounding event. These studies suggest that the dynamics of uncertainty may have common characteristics across teams and tasks and that forecasts of their short-term evolution can be estimated.


1999 ◽  
Vol 126 (3) ◽  
pp. 315-335 ◽  
Author(s):  
Ilsun M. White ◽  
S. P. Wise

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Chang-Wei Hsieh ◽  
Jih-Huah Wu ◽  
Chao-Hsien Hsieh ◽  
Qwa-Fun Wang ◽  
Jyh-Horng Chen

The aim of this study is to compare the distinct cerebral activation with continued wave (CW) and 10 Hz-modulated wave (MW) stimulation during low-level laser acupuncture. Functional magnetic resonance imaging (fMRI) studies were performed to investigate the possible mechanism during laser acupuncture stimulation at the left foot's yongquan (K1) acupoint. There are 12 healthy right-handed volunteers for each type of laser stimulation (10-Hz-Modulated wave: 8 males and 4 females; continued wave: 9 males and 3 females). The analysis of multisubjects in this experiment was applied by random-effect (RFX) analysis. In CW groups, significant activations were found within the inferior parietal lobule, the primary somatosensory cortex, and the precuneus of left parietal lobe. Medial and superior frontal gyrus of left frontal lobe were also aroused. In MW groups, significant activations were found within the primary motor cortex and middle temporal gyrus of left hemisphere and bilateral cuneus. Placebo stimulation did not show any activation. Most activation areas were involved in the functions of memory, attention, and self-consciousness. The results showed the cerebral hemodynamic responses of two laser acupuncture stimulation modes and implied that its mechanism was not only based upon afferent sensory information processing, but that it also had the hemodynamic property altered during external stimulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca F. Kaiser ◽  
Theo O. J. Gruendler ◽  
Oliver Speck ◽  
Lennart Luettgau ◽  
Gerhard Jocham

AbstractIn a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-leaving decisions involve balancing the cost of moving against the gain expected from the alternative patch. This contrasts with value-guided decisions that typically involve maximizing reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to underlie value-guided choice. Here, we show that the balance between cortical excitation and inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in vmPFC. These results support mechanistic accounts of value-guided choice and provide evidence for a role of dACC E/I balance in patch-leaving decisions.


1997 ◽  
Vol 78 (1) ◽  
pp. 450-460 ◽  
Author(s):  
Peter Svensson ◽  
Satoshi Minoshima ◽  
Ahmad Beydoun ◽  
Thomas J. Morrow ◽  
Kenneth L. Casey

Svensson, Peter, Satoshi Minoshima, Ahmad Beydoun, Thomas J. Morrow, and Kenneth L. Casey. Cerebral processing of acute skin and muscle pain in humans. J. Neurophysiol. 78: 450–460, 1997. The human cerebral processing of noxious input from skin and muscle was compared with the use of positron emission tomography with intravenous H2 15O to detect changes in regional cerebral blood flow (rCBF) as an indicator of neuronal activity. During each of eight scans, 11 normal subjects rated the intensity of stimuli delivered to the nondominant (left) forearm on a scale ranging from 0 to 100 with 70 as pain threshold. Cutaneous pain was produced with a high-energy CO2 laser stimulator. Muscle pain was elicited with high-intensity intramuscular electrical stimulation. The mean ratings of perceived intensity for innocuous and noxious stimulation were32.6 ± 4.5 (SE) and 78.4 ± 1.7 for cutaneous stimulation and 15.4 ± 4.2 and 73.5 ± 1.4 for intramuscular stimulation. The pain intensity ratings and the differences between noxious and innocuous ratings were similar for cutaneous and intramuscular stimuli ( P > 0.05). After stereotactic registration, statistical pixel-by-pixel summation ( Z score) and volumes-of-interest (VOI) analyses of subtraction images were performed. Significant increases in rCBF to both noxious cutaneous and intramuscular stimulation were found in the contralateral secondary somatosensory cortex (SII) and inferior parietal lobule [Brodmann area (BA) 40]. Comparable levels of rCBF increase were found in the contralateral anterior insular cortex, thalamus, and ipsilateral cerebellum. Noxious cutaneous stimulation caused significant activation in the contralateral lateral prefrontal cortex (BA 10/46) and ipsilateral premotor cortex (BA 4/6). Noxious intramuscular stimulation evoked rCBF increases in the contralateral anterior cingulate cortex (BA 24) and subsignificant responses in the contralateral primary sensorimotor cortex (MI/SI) and lenticular nucleus. These activated cerebral structures may represent those recruited early in nociceptive processing because both forms of stimuli were near pain threshold. Correlation analyses showed a negative relationship between changes in rCBF for thalamus and MI/SI for cutaneous stimulation, and positive relationships between thalamus and anterior insula for both stimulus modalities. Direct statistical comparisons between innocuous cutaneous and intramuscular stimulation with the use of Z scores and VOI analyses showed no reliable differences between these two forms of noxious stimulation, indicating a substantial overlap in brain activation pattern. The comparison of noxious cutaneous and intramuscular stimulation indicated more activation in the premotor cortex, SII, and prefrontal cortex with cutaneous stimulation, but these differences did not reach statistical significance. The similar cerebral activation patterns suggest that the perceived differences between acute skin and muscle pain are mediated by differences in the intensity and temporospatial pattern of neuronal activity within similar sets of forebrain structures.


Sign in / Sign up

Export Citation Format

Share Document