Sweet Taste Transduction in Hamster: Role of Protein Kinases

2000 ◽  
Vol 83 (5) ◽  
pp. 2526-2532 ◽  
Author(s):  
Brian Varkevisser ◽  
Sue C. Kinnamon

Two different second-messenger pathways have been implicated in sweet taste transduction: sugars produce cyclic AMP (cAMP), whereas synthetic sweeteners stimulate production of inositol 1,4,5-tris-phosphate (IP3) and diacylglycerol (DAG). Both sugars and sweeteners depolarize taste cells by blocking the same resting K+conductance, but the intermediate steps in the transduction pathways have not been examined. In this study, the loose-patch recording technique was used to examine the role of protein kinases and other downstream regulatory proteins in the two sweet transduction pathways. Bursts of action currents were elicited from ∼35% of fungiform taste buds in response to sucrose (200 mM) or NC-00274–01 (NC-01, 200 μM), a synthetic sweetener. To determine whether protein kinase C (PKC) plays a role in sweet transduction, taste buds were stimulated with the PKC activator PDBu (10 μM). In all sweet-responsive taste buds tested ( n = 11), PDBu elicited burst of action currents. In contrast, PDBu elicited responses in only 4 of 19 sweet-unresponsive taste buds. Inhibition of PKC by bisindolylmaleimide I (0.15 μM) resulted in inhibition of the NC-01 response by ∼75%, whereas the response to sucrose either increased or remained unchanged. These data suggest that activation of PKC is required for the transduction of synthetic sweeteners. To determine whether protein kinase A (PKA) is required for the transduction of sugars, sweet responses were examined in the presence of the membrane-permeant PKA inhibitor H-89 (10 and 19 μM). Surprisingly, H-89 did not decrease responses to either sucrose or NC-01. Instead, responses to both compounds were increased in the presence of the inhibitor. These data suggest that PKA is not required for the transduction of sugars, but may play a modulatory role in both pathways, such as adaptation of the response. We also examined whether Ca2+-calmodulin dependent cAMP phosphodiesterase (CaM-PDE) plays a role in sweet taste transduction, by examining responses to sucrose and synthetic sweeteners in the presence of the CaM-PDE inhibitor W-7 (100 μM). Inhibition resulted in an increase in the response to sucrose, whereas the response to NC-01 remained unchanged. These data suggest that the pathways for sugars and sweeteners are negatively coupled; the Ca2+ that is released from intracellular stores during stimulation with synthetic sweeteners may inhibit the response to sucrose by activation of CaM-PDE.


1993 ◽  
Vol 295 (1) ◽  
pp. 255-261 ◽  
Author(s):  
L Tenneti ◽  
B R Talamo

Evidence for the modulation of the P2z-purinoceptor for extracellular ATP in dissociated rat parotid cells is presented in studies using compounds that inhibit protein kinases. Preincubation of acinar cells with the protein kinase catalytic-site inhibitors K-252a and staurosporine, as well as with the regulatory-domain inhibitor sphingosine, specifically potentiates the elevation in cytosolic Ca2+ concentration ([Ca2+]i) mediated by extracellular ATP, but has no effect on the [Ca2+]i elevation mediated by muscarinic receptors through phospholipase C activation. Phorbol dibutyrate (PDBu), which activates protein kinase C (PKC), has no modulatory effect on ATP-mediated [Ca2+]i elevation. Further, pretreatment with PDBu does not reverse or block the effects of K-252a or sphinogosine, arguing against the involvement of PKC. Other pharmacological manipulations indicate that neither calmodulin-dependent nor cyclic-AMP-dependent kinases are involved. Neither the peak intracellular Ca2+ mobilization nor the sustained Ca2+ entry in response to carbachol or to a Ca2+ ionophore (4-bromo-A23187) is altered by the kinase inhibitors that potentiate the [Ca2+]i response to ATP, indicating that effects on the ATP response are not due to non-specific permeability changes, nor to decreased Ca2+ removal from the cytosol. ATP-mediated influx of Mn2+ as well as ATP-induced membrane depolarization are potentiated in cells preincubated with K-252a, directly demonstrating that cation influx is enhanced through a P2z-specific route. These results show that P2z responses (or purinoceptors) can be modulated and suggest that phosphorylation events are involved.



2013 ◽  
Vol 91 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Harjot K. Saini-Chohan ◽  
Larry Hryshko ◽  
Yan-Jun Xu ◽  
Naranjan S. Dhalla

We examined the role of redox-sensitive signal transduction mechanisms in modifying the changes in [Ca2+]i produced by ouabain upon incubating adult rat cardiomyocytes with antioxidants or inhibitors of different protein kinases and monitoring alterations in fura-2 fluorescence. Ouabain increased basal [Ca2+]i, augmented the KCl-induced increase in [Ca2+]i, and promoted oxyradical production in cardiomyocytes. These actions of ouabain were attenuated by an oxyradical scavenging mixture (superoxide dismutase plus catalase), and the antioxidants (N-acetyl-l-cysteine and N-(2-mercaptoproprionyl)glycine). An inhibitor of MAP kinase (PD98059) depressed the ouabain-induced increase in [Ca2+], whereas inhibitors of tyrosine kinase (tyrphostin and genistein) and PI3 kinase (Wortmannin and LV294002) enhanced the ouabain-induced increase in [Ca2+]i. Inhibitors of protein kinase C (calphostin and bisindolylmalaimide) augmented the ouabain-induced increase in [Ca2+]i, whereas stimulation of protein kinase C by a phorbol ester (phorbol 12-myristate 13-acetate) depressed the action of ouabain. These results suggest that ouabain-induced inhibition of Na +–K+ ATPase may alter the redox status of cardiomyocytes through the production of oxyradicals, and increase the activities of various protein kinases. Thus, these redox-sensitive signal transduction mechanisms involving different protein kinases may modify Ca2+-handling sites in cardiomyocytes and determine the magnitude of net increase in [Ca2+]i in response to ouabain.



Toxicology ◽  
2005 ◽  
Vol 211 (3) ◽  
pp. 253-264 ◽  
Author(s):  
Marit Låg ◽  
Magne Refsnes ◽  
Edel M. Lilleaas ◽  
Jørn A. Holme ◽  
Rune Becher ◽  
...  


1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S63-S64
Author(s):  
A. K. MUKHOPADHYAY ◽  
H. G. BOHNET


Author(s):  
Ghanshyam N Pandey ◽  
Anuradha Sharma ◽  
Hooriyah S Rizavi ◽  
Xinguo Ren

Abstract Background Several lines of evidence suggest the abnormalities of protein kinase C (PKC) signaling system in mood disorders and suicide based primarily on the studies of PKC and its isozymes in the platelets and postmortem brain of depressed and suicidal subjects. In this study we examined the role of PKC isozymes in depression and suicide. Methods We determined the protein and mRNA expression of various PKC isozymes in the prefrontal cortical region [Brodmann area 9 (BA9)] in 24 normal control (NC) subjects, 24 depressed suicide (DS) subjects and 12 depressed non-suicide (DNS) subjects. The levels of mRNA in the prefrontal cortex (PFC) were determined by qRT-PCR and the protein expression was determined by Western blotting. Results We observed a significant decrease in mRNA expression of PKCα, PKCβI, PKCδ and PKCε and decreased protein expression either in the membrane or the cytosol fraction of PKC isozymes - PKCα, PKCβI, PKCβII and PKCδ in DS and DNS subjects compared with NC subjects. Conclusions The current study provides detailed evidence of specific dysregulation of certain PKC isozymes in the postmortem brain of DS and DNS subjects and further supports earlier evidence for the role of PKC in the platelets and brain of adult and teenage depressed and suicidal population. This comprehensive study may lead to further knowledge of the involvement of PKC in the pathophysiology of depression and suicide.



1992 ◽  
Vol 267 (28) ◽  
pp. 19824-19828
Author(s):  
C Block ◽  
S Freyermuth ◽  
D Beyersmann ◽  
A.N. Malviya


1994 ◽  
Vol 14 (6) ◽  
pp. 259-270 ◽  
Author(s):  
Irina V. Budunova ◽  
Leonid A. Mittelman ◽  
Joanna Miloszewska


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamish Patel ◽  
Reza Zamani

Abstract Long-term memories are thought to be stored in neurones and synapses that undergo physical changes, such as long-term potentiation (LTP), and these changes can be maintained for long periods of time. A candidate enzyme for the maintenance of LTP is protein kinase M zeta (PKMζ), a constitutively active protein kinase C isoform that is elevated during LTP and long-term memory maintenance. This paper reviews the evidence and controversies surrounding the role of PKMζ in the maintenance of long-term memory. PKMζ maintains synaptic potentiation by preventing AMPA receptor endocytosis and promoting stabilisation of dendritic spine growth. Inhibition of PKMζ, with zeta-inhibitory peptide (ZIP), can reverse LTP and impair established long-term memories. However, a deficit of memory retrieval cannot be ruled out. Furthermore, ZIP, and in high enough doses the control peptide scrambled ZIP, was recently shown to be neurotoxic, which may explain some of the effects of ZIP on memory impairment. PKMζ knockout mice show normal learning and memory. However, this is likely due to compensation by protein-kinase C iota/lambda (PKCι/λ), which is normally responsible for induction of LTP. It is not clear how, or if, this compensatory mechanism is activated under normal conditions. Future research should utilise inducible PKMζ knockdown in adult rodents to investigate whether PKMζ maintains memory in specific parts of the brain, or if it represents a global memory maintenance molecule. These insights may inform future therapeutic targets for disorders of memory loss.



Sign in / Sign up

Export Citation Format

Share Document