Anatomy, Physiology, and Synaptic Responses of Rat Layer V Auditory Cortical Cells and Effects of Intracellular GABAABlockade

2000 ◽  
Vol 83 (5) ◽  
pp. 2626-2638 ◽  
Author(s):  
Brenda J. Hefti ◽  
Philip H. Smith

The varied extracortical targets of layer V make it an important site for cortical processing and output, which may be regulated by differences in the pyramidal neurons found there. Two populations of projection neurons, regular spiking (RS) and intrinsic bursting (IB), have been identified in layer V of some sensory cortices, and differences in their inhibitory inputs have been indirectly demonstrated. In this report, IB and RS cells were identified in rat auditory cortical slices, and differences in thalamocortical inhibition reaching RS and IB cells were demonstrated directly using intracellular GABAA blockers. Thalamocortical synaptic input to RS cells was always a combination of excitation and both GABAA and GABAB inhibition. Stimulation seldom triggered a suprathreshold response. IB cell synaptic responses were mostly excitatory, and stimulation usually triggered action potentials. This apparent difference was confirmed directly using intracellular chloride channel blockers. Before intracellular diffusion, synaptic responses were stable and similar to control conditions. Subsequently, GABAA was blocked, revealing a cell's total excitatory input. On GABAAblockade, RS cells responded to synaptic stimulation with large, suprathreshold excitatory events, indicating that excitation, while always present in these cells, is masked by GABAA. In IB cells that had visible GABAA input, it often masked an excitatory postsynaptic potential (EPSP) that could lead to additional suprathreshold events. These findings indicate that IB cells receive less GABAA-mediated inhibitory input and are able to spike or burst in response to thalamocortical synaptic stimulation far more readily than RS cells. Such differences may have implications for the influence each cell type exerts on its postsynaptic targets.

2009 ◽  
Vol 101 (2) ◽  
pp. 641-654 ◽  
Author(s):  
Sofija Andjelic ◽  
Thierry Gallopin ◽  
Bruno Cauli ◽  
Elisa L. Hill ◽  
Lisa Roux ◽  
...  

The deeper part of neocortical layer VI is dominated by nonpyramidal neurons, which lack a prominent vertically ascending dendrite and predominantly establish corticocortical connections. These neurons were studied in rat neocortical slices using patch-clamp, single-cell reverse transcription–polymerase chain reaction, and biocytin labeling. The majority of these neurons expressed the vesicular glutamate transporter but not glutamic acid decarboxylase, suggesting that a high proportion of layer VI nonpyramidal neurons are glutamatergic. Indeed, they exhibited numerous dendritic spines and established asymmetrical synapses. Our sample of glutamatergic nonpyramidal neurons displayed a wide variety of somatodendritic morphologies and a subset of these cells expressed the Nurr1 mRNA, a marker for ipsilateral, but not commissural corticocortical projection neurons in layer VI. Comparison with spiny stellate and pyramidal neurons from other layers showed that glutamatergic neurons consistently exhibited a low occurrence of GABAergic interneuron markers and regular spiking firing patterns. Analysis of electrophysiological diversity using unsupervised clustering disclosed three groups of cells. Layer V pyramidal neurons were segregated into a first group, whereas a second group consisted of a subpopulation of layer VI neurons exhibiting tonic firing. A third heterogeneous cluster comprised spiny stellate, layer II/III pyramidal, and layer VI neurons exhibiting adaptive firing. The segregation of layer VI neurons in two different clusters did not correlate either with their somatodendritic morphologies or with Nurr1 expression. Our results suggest that electrophysiological similarities between neocortical glutamatergic neurons extend beyond layer positioning, somatodendritic morphology, and projection specificity.


1999 ◽  
Vol 82 (4) ◽  
pp. 1748-1758 ◽  
Author(s):  
Paul C. Bush ◽  
David A. Prince ◽  
Kenneth D. Miller

Partially isolated cortical islands prepared in vivo become epileptogenic within weeks of the injury. In this model of chronic epileptogenesis, recordings from cortical slices cut through the injured area and maintained in vitro often show evoked, long- and variable-latency multiphasic epileptiform field potentials that also can occur spontaneously. These events are initiated in layer V and are synchronous with polyphasic long-duration excitatory and inhibitory potentials (currents) in neurons that may last several hundred milliseconds. Stimuli that are significantly above threshold for triggering these epileptiform events evoke only a single large excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). We investigated the physiological basis of these events using simulations of a layer V network consisting of 500 compartmental model neurons, including 400 principal (excitatory) and 100 inhibitory cells. Epileptiform events occurred in response to a stimulus when sufficient N-methyl-d-aspartate (NMDA) conductance was activated by feedback excitatory activity among pyramidal cells. In control simulations, this activity was prevented by the rapid development of IPSPs. One manipulation that could give rise to epileptogenesis was an increase in the threshold of inhibitory interneurons. However, previous experimental data from layer V pyramidal neurons of these chronic epileptogenic lesions indicate: upregulation, rather than downregulation, of inhibition; alterations in the intrinsic properties of pyramidal cells that would tend to make them more excitable; and sprouting of their intracortical axons and increased numbers of presumed synaptic contacts, which would increase recurrent EPSPs from one cell onto another. Consistent with this, we found that increasing the excitability of pyramidal cells and the strength of NMDA conductances, in the face of either unaltered or increased inhibition, resulted in generation of epileptiform activity that had characteristics similar to those of the experimental data. Thus epileptogenesis such as occurs after chronic cortical injury can result from alterations of intrinsic membrane properties of pyramidal neurons together with enhanced NMDA synaptic conductances.


2005 ◽  
Vol 93 (2) ◽  
pp. 687-696 ◽  
Author(s):  
K. M. Jacobs ◽  
D. A. Prince

Developmental cortical malformations are common in patients with intractable epilepsy; however, mechanisms contributing to this epileptogenesis are currently poorly understood. We previously characterized hyperexcitability in a rat model that mimics the histopathology of human 4-layered microgyria. Here we examined inhibitory and excitatory postsynaptic currents in this model to identify functional alterations that might contribute to epileptogenesis associated with microgyria. We recorded isolated whole cell excitatory postsynaptic currents and GABAA receptor-mediated inhibitory currents (EPSCs and IPSCs) from layer V pyramidal neurons in the region previously shown to be epileptogenic (paramicrogyral area) and in homotopic control cortex. Epileptiform-like activity could be evoked in 60% of paramicrogyral (PMG) cells by local stimulation. The peak conductance of both spontaneous and evoked IPSCs was significantly larger in all PMG cells compared with controls. This difference in amplitude was not present after blockade of ionotropic glutamatergic currents or for miniature (m)IPSCs, suggesting that it was due to the excitatory afferent activity driving inhibitory neurons. This conclusion was supported by the finding that glutamate receptor antagonist application resulted in a significantly greater reduction in spontaneous IPSC frequency in one PMG cell group (PMGE) compared with control cells. The frequency of both spontaneous and miniature EPSCs was significantly greater in all PMG cells, suggesting that pyramidal neurons adjacent to a microgyrus receive more excitatory input than do those in control cortex. These findings suggest that there is an increase in numbers of functional excitatory synapses on both interneurons and pyramidal cells in the PMG cortex perhaps due to hyperinnervation by cortical afferents originally destined for the microgyrus proper.


2021 ◽  
Author(s):  
Rawan AlSubaie ◽  
Ryan W S Wee ◽  
Anne Ritoux ◽  
Karyna Mischanchuk ◽  
Daniel Regester ◽  
...  

ABSTRACTProjections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons, and avoids prefrontal cortex-projecting vH neurons; while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.


2015 ◽  
Vol 112 (26) ◽  
pp. 8106-8111 ◽  
Author(s):  
Manabu Fuchikami ◽  
Alexandra Thomas ◽  
Rongjian Liu ◽  
Eric S. Wohleb ◽  
Benjamin B. Land ◽  
...  

Ketamine produces rapid and sustained antidepressant actions in depressed patients, but the precise cellular mechanisms underlying these effects have not been identified. Here we determined if modulation of neuronal activity in the infralimbic prefrontal cortex (IL-PFC) underlies the antidepressant and anxiolytic actions of ketamine. We found that neuronal inactivation of the IL-PFC completely blocked the antidepressant and anxiolytic effects of systemic ketamine in rodent models and that ketamine microinfusion into IL-PFC reproduced these behavioral actions of systemic ketamine. We also found that optogenetic stimulation of the IL-PFC produced rapid and long-lasting antidepressant and anxiolytic effects and that these effects are associated with increased number and function of spine synapses of layer V pyramidal neurons. The results demonstrate that ketamine infusions or optogenetic stimulation of IL-PFC are sufficient to produce long-lasting antidepressant behavioral and synaptic responses similar to the effects of systemic ketamine administration.


1994 ◽  
Vol 71 (6) ◽  
pp. 2183-2193 ◽  
Author(s):  
P. C. Bush ◽  
T. J. Sejnowski

1. We have used compartmental models of reconstructed pyramidal neurons from layers 2 and 5 of cat visual cortex to investigate the nonlinear summation of excitatory synaptic input and the effectiveness of inhibitory input in countering this excitation. 2. In simulations that match the conditions of a recent experiment, dendritic saturation was significant for physiological levels of synaptic activation: a compound excitatory postsynaptic potential (EPSP) electrically evoked during a depolarization caused by physiological synaptic activation was decreased by up to 80% compared with an EPSP evoked at rest. 3. Synaptic inhibition must be coactivated with excitation to quantitatively match the experimental results. The experimentally observed coactivation of inhibition with excitation produced additional current shunts that amplified the decrease in test EPSP amplitude. About 30% of the experimentally observed decrease in EPSP amplitude was caused by decreases in input resistance (Rin) due to synaptic conductance changes; a reduced driving force accounted for the remaining decrease. 4. The amount of inhibition was then increased by nearly an order of magnitude, to approximately 10% of the total number of inhibitory synapses on a typical cortical pyramidal cell. The sustained firing of this many inhibitory inputs was sufficient to completely suppress the firing of a neuron receiving strong excitatory input. However, this level of inhibition produced a very large reduction in Rin. Such large reductions in Rin have not been observed experimentally, suggesting that inhibition in cortex does not act to veto (shunt) strong, sustained excitatory input (of order 100 ms). 5. We propose instead that strong, transient activation (< 10 ms) of a neuron's inhibitory inputs, sufficient to briefly prevent firing, is used to shape the temporal structure of the cell's output spike train. Specifically, cortical inhibition may serve to synchronize the firing of groups of pyramidal cells during optimal stimulation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rawan AlSubaie ◽  
Ryan WS Wee ◽  
Anne Ritoux ◽  
Karyna Mishchanchuk ◽  
Jessica Passlack ◽  
...  

Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons, and avoids prefrontal cortex-projecting vH neurons; while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.


2005 ◽  
Vol 93 (5) ◽  
pp. 2634-2643 ◽  
Author(s):  
Jieun Shin ◽  
Fran Shen ◽  
John R. Huguenard

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) mediate the majority of fast excitation in the CNS. Receptors lacking GluR2 exhibit inward rectification and paired-pulse facilitation (PPF) due to polyamine (PA)-dependent block and unblock, respectively. In this study, we tested whether rectification and PPF in immature, but not mature, pyramidal neurons depend not only on the absence of functional GluR2 but also on the level of endogenous PAs. Whole cell recordings were obtained from layer V pyramidal neurons of P12–P14 or P16–P20 rats in the presence or absence of spermine in the pipette (50 μM). Isolated minimal excitatory synaptic responses were obtained, and paired (20 Hz) stimuli were used to investigate the rectification index (RI) and paired-pulse ratio (PPR). Spermine and its synthetic enzyme, ornithine decarboxylase (ODC), expression was examined using immunostaining and Western blot, respectively. At the immature stage (<P15) inclusion of intracellular spermine increased rectification and PPF for evoked excitatory postsynaptic currents (EPSCs) but had little or no effect on either measure in more mature (P16–P20) pyramidal neurons. Depletion of PAs reduced rectification suggesting that endogenous PAs play a critical role in functional regulation of AMPARs. Spermine immunoreactivity and ODC expression in immature rat neocortex (<P15) were greater than more mature tissue by ∼20 and 60%, respectively. These results provide further support for the idea that excitatory synapses on immature neocortical pyramidal neurons ubiquitously contain AMPA receptors lacking the GluR2 subunit and that the level of endogenous PAs plays an important role in modulating AMPAR-dependent neurotransmission.


1992 ◽  
Vol 67 (3) ◽  
pp. 715-727 ◽  
Author(s):  
C. Silva-Barrat ◽  
S. Araneda ◽  
C. Menini ◽  
J. Champagnat ◽  
R. Naquet

1. gamma-Aminobutyric acid (GABA) withdrawal syndrome (GWS) represents a particular model of focal epilepsy consecutive to the interruption of a chronic intracortical GABA infusion and is characterized by the appearance of focal epileptic electroencephalographic (EEG) discharges and localized clinical signs on withdrawal of GABA. Effects of Ca2+ channel blockers and N-methyl-D-aspartate (NMDA) antagonists were evaluated in living rats presenting a GWS after interruption of a 5-day GABA infusion into the somatomotor cortex and in neocortical slices obtained from such rats. Bursting properties and morphology of neurons were also analyzed in slices. 2. In living rats, the noncompetitive NMDA antagonist phencyclidine [1-(1-phenylcyclohexyl)piperidine] and the Ca2+ antagonist flunarizine [E-1 (bis(4fluorophenyl)methyl)-4(3phenyl2-propenyl)-piperazine] were administered systemically to two groups of rats. Rats in the first group (n = 12) were injected with the drug 30-60 min before discontinuation of the GABA infusion. In this case, phencyclidine (10 mg/kg ip) prevented the development of GWS (n = 5), whereas flunarizine (40 mg/kg ip) had no consistent effect on the GWS appearance and characteristics (n = 7). Rats in the second group (n = 12) were injected 60-90 min after GABA discontinuation, i.e., during a fully developed GWS. In that case, neither drug suppressed GWS. 3. Neuronal activities in the epileptic focus were studied in slices with conventional intracellular recording and stimulation techniques. From the 65 neurons recorded, 29 responded with EPSPs and paroxysmal depolarization shifts (PDSs) to white matter stimulation (synaptic bursting or SB cells). Nineteen other neurons presented, in addition to synaptically induced PDSs, bursts of action potentials (APs) induced by intracellular depolarizing current injection (intrinsic bursting or IB cells). The remaining 17 neurons presented no bursting properties to either synaptic stimulation or depolarizing current injection (nonbursting or NB cells). 4. The recorded neurons were located 0.7-1.2 mm distant from the lesion because of the penetration of the GABA infusion cannula. Intracellular injection of neurons (n = 4) with biocytin or Lucifer yellow revealed that both SB and IB neurons were large, spiny pyramidal neurons localized in layer V of the sensorimotor cortex. 5. Bath application of the selective antagonist of NMDA receptors DL-2amino-5phosphonovalerate or DL-2amino-7phosphonoheptanoate (10-50 microM) reversibly reduced the amplitude (by 25-50%) and the duration (by 20-25%) of PDSs in all cases (n = 17).(ABSTRACT TRUNCATED AT 400 WORDS)


2010 ◽  
Vol 103 (6) ◽  
pp. 3287-3301 ◽  
Author(s):  
Bai-Chuang Shyu ◽  
Robert W. Sikes ◽  
Leslie J. Vogt ◽  
Brent A. Vogt

Although the cingulate cortex is frequently activated in acute human pain studies, postsynaptic responses are not known nor are links between nociceptive afferents, neuronal responses, and outputs to other structures. Intracellular potentials were recorded from neurobiotin-injected, pyramidal neurons in anterior cingulate area 24b following noxious stimulation of the sciatic nerve in anesthetized rabbits. Layer IIIc pyramids had extensive and horizontally oriented basal dendrites in layer IIIc where nociceptive afferents terminate. They had the longest excitatory postsynaptic potentials (EPSPs; 545 ms) that were modulated with hyperpolarizing currents. Pyramids in layer V had an intermediate tuft of oblique apical dendrites in layer IIIc that were 150–350 μm from somata in layer Va and 351–550 μm in layer Vb. Although average EPSP durations were short in layers II–IIIab (222 ± 31), Va (267 ± 65), and Vb (159 ± 31), there were five neurons in layers IIIab–Va that had EPSP durations lasting >300 ms (548 ± 63 ms). Neurons in layers IIIc, Va, and Vb had the highest amplitude EPSPs (6.25, 6.84 ± 0.58, and 6.4 ± 0.47 mV, respectively), whereas those in layers II–IIIab were 5 ± 0.56 mV. Nociceptive responses in layer Vb were complex and some had initial inhibitory postsynaptic potentials with shorter-duration EPSPs. Layers II–IIIab had dye-coupled pyramids and EPSPs in these layers had short durations (167 ± 33 ms) compared with those in layers IIIc–Va (487 ± 28 ms). In conclusion there are two populations of anterior cingulate cortex pyramids with EPSPs of significantly different durations, although their dendritic morphologies do not predict EPSP duration. Short-duration EPSPs are thalamic-mediated, nociceptive responses lasting ≤200 ms. Longer, “integrative” EPSPs are >350 ms and are likely modulated by intracortical axon collateral discharges. These findings suggest that links between nociception and projections to cortical and motor systems are instantaneous because nociceptive responses are generated directly by pyramidal projection neurons in all layers.


Sign in / Sign up

Export Citation Format

Share Document