Reorganization of Primary Motor Cortex in Adult Macaque Monkeys With Long-Standing Amputations

2000 ◽  
Vol 84 (4) ◽  
pp. 2133-2147 ◽  
Author(s):  
Hui-Xin Qi ◽  
Iwona Stepniewska ◽  
Jon H. Kaas

The organization of primary motor cortex (M1) of adult macaque monkeys was examined years after therapeutic amputation of part of a limb or digits. For each case, a large number of sites in M1 were electrically stimulated with a penetrating microelectrode, and the evoked movements and levels of current needed to evoke the movements were recorded. Results from four monkeys with the loss of a forelimb near or above the elbow show that extensive regions of cortex formerly devoted to the missing hand evoked movements of the stump and the adjoining shoulder. Threshold current levels for stump movements were comparable to those for normal arm movements. Few or no sites in the estimated former territory of the hand evoked face movements. Similar patterns of reorganization were observed in all four cases, which included two monkeys injured as adults, one as a juvenile, and one as an infant. In a single monkey with a hindlimb amputation at the knee as an infant, stimulation of cortex in the region normally devoted to the foot moved the leg stump, again at thresholds in the range for normal movements. Finally, in a monkey that had lost digit 5 and the distal phalanges of digits 2–4 at 2 yr of age, much of the hand portion of M1 was devoted to movements of the digit stumps.

2021 ◽  
pp. 1-10
Author(s):  
Ericka Greene ◽  
Jason Thonhoff ◽  
Blessy S. John ◽  
David B. Rosenfield ◽  
Santosh A. Helekar

Background: Repeated neuromuscular electrical stimulation in type 1 Myotonic Dystrophy (DM1) has previously been shown to cause an increase in strength and a decrease in hyperexcitability of the tibialis anterior muscle. Objective: In this proof-of-principle study our objective was to test the hypothesis that noninvasive repetitive transcranial magnetic stimulation of the primary motor cortex (M1) with a new portable wearable multifocal stimulator causes improvement in muscle function in DM1 patients. Methods: We performed repetitive stimulation of M1, localized by magnetic resonance imaging, with a newly developed Transcranial Rotating Permanent Magnet Stimulator (TRPMS). Using a randomized within-patient placebo-controlled double-blind TRPMS protocol, we performed unilateral active stimulation along with contralateral sham stimulation every weekday for two weeks in 6 adults. Methods for evaluation of muscle function involved electromyography (EMG), hand dynamometry and clinical assessment using the Medical Research Council scale. Results: All participants tolerated the treatment well. While there were no significant changes clinically, EMG showed significant improvement in nerve stimulus-evoked compound muscle action potential amplitude of the first dorsal interosseous muscle and a similar but non-significant trend in the trapezius muscle, after a short exercise test, with active but not sham stimulation. Conclusions: We conclude that two-week repeated multifocal cortical stimulation with a new wearable transcranial magnetic stimulator can be safely conducted in DM1 patients to investigate potential improvement of muscle strength and activity. The results obtained, if confirmed and extended by future safety and efficacy trials with larger patient samples, could offer a potential supportive TRPMS treatment in DM1.


2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


2013 ◽  
Vol 110 (5) ◽  
pp. 1180-1189 ◽  
Author(s):  
Gustaf M. Van Acker ◽  
Sommer L. Amundsen ◽  
William G. Messamore ◽  
Hongyu Y. Zhang ◽  
Carl W. Luchies ◽  
...  

High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied to motor cortex is recognized as a useful and informative method for corticomotor mapping by evoking natural-appearing movements of the limb to consistent stable end-point positions. An important feature of these movements is that stimulation of a specific site in motor cortex evokes movement to the same spatial end point regardless of the starting position of the limb. The goal of this study was to delineate effective stimulus parameters for evoking forelimb movements to stable spatial end points from HFLD-ICMS applied to primary motor cortex (M1) in awake monkeys. We investigated stimulation of M1 as combinations of frequency (30–400 Hz), amplitude (30–200 μA), and duration (0.5–2 s) while concurrently recording electromyographic (EMG) activity from 24 forelimb muscles and movement kinematics with a motion capture system. Our results suggest a range of parameters (80–140 Hz, 80–140 μA, and 1,000-ms train duration) that are effective and safe for evoking forelimb translocation with subsequent stabilization at a spatial end point. The mean time for stimulation to elicit successful movement of the forelimb to a stable spatial end point was 475.8 ± 170.9 ms. Median successful frequency and amplitude were 110 Hz and 110 μA, respectively. Attenuated parameters resulted in inconsistent, truncated, or undetectable movements, while intensified parameters yielded no change to movement end points and increased potential for large-scale physiological spread and adverse focal motor effects. Establishing cortical stimulation parameters yielding consistent forelimb movements to stable spatial end points forms the basis for a systematic and comprehensive mapping of M1 in terms of evoked movements and associated muscle synergies. Additionally, the results increase our understanding of how the central nervous system may encode movement.


2019 ◽  
Vol 13 ◽  
Author(s):  
Michela Fregosi ◽  
Alessandro Contestabile ◽  
Simon Badoud ◽  
Simon Borgognon ◽  
Jérôme Cottet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document