Functional Expression of L-, N-, P/Q-, and R-Type Calcium Channels in the Human NT2-N Cell Line

2000 ◽  
Vol 84 (6) ◽  
pp. 2933-2944 ◽  
Author(s):  
Torben R. Neelands ◽  
Anthony P. J. King ◽  
Robert L. Macdonald

The biophysical and pharmacological properties of voltage-gated calcium channel currents in the human teratocarcinoma cell line NT2-N were studied using the whole cell patch-clamp technique. When held at −80 mV, barium currents ( I Bas) were evoked by voltage commands to above −35 mV that peaked at +5 mV. When holding potentials were reduced to −20 mV or 5 mM barium was substituted for 5 mM calcium, there was a reduction in peak currents and a right shift in the current-voltage curve. A steady-state inactivation curve for I Ba was fit with a Boltzmann curve ( V 1/2 = −43.3 mV; slope = −17.7 mV). Maximal current amplitude increased from 1-wk (232 pA) to 9-wk (1025 pA) postdifferentiation. Whole cell I Bas were partially blocked by specific channel blockers to a similar extent in 1- to 3-wk and 7- to 9-wk postdifferentiation NT2-N cells: 10 μM nifedipine (19 vs. 25%), 10 μM conotoxin GVIA (27 vs. 25%), 10 μM conotoxin MVIIC (15 vs. 16%), and 1.75 μM SNX-482 (31 vs. 33%). Currents were completely blocked by 300 μM cadmium. In the presence of nifedipine, GVIA, and MVIIC, ∼35% of current remained, which was reduced further by SNX-482 (7–14% of current remained), consistent with functional expression of L-, N-, and P/Q-calcium channel types and one or more R-type channel. The presence of multiple calcium currents in this human neuronal-type cell line provides a potentially useful model for study of the regulation, expression and cellular function of human derived calcium channel currents; in particular the R-type current(s).

1993 ◽  
Vol 177 (1) ◽  
pp. 201-221 ◽  
Author(s):  
H. A. Pearson ◽  
G. Lees ◽  
D. Wray

1. Using the patch-clamp technique, Ca2+ channel currents were recorded from neurones freshly isolated from the thoracic ganglia of the desert locust Schistocerca gregaria. 2. In solutions containing 10 mmol l-1 Ba2+ we observed high-voltage-activated whole-cell inward currents with sustained and transient components, both of which had similar steady-state inactivation properties. 3. Substitution of Ca2+ for Ba2+ was found to reduce whole-cell currents, whereas removal of monovalent cations had no effect. 4. Cd2+ (1 mmol l-1) completely blocked the whole-cell current, but at 10 micromolar preferentially inhibited the sustained component without affecting the transient component. 5. Verapamil (1 micromolar) inhibited both current components but appeared to be more selective for the sustained component, whereas nitrendipine (1 micromolar) had no effect on either component. 6. A single-channel recording suggested that the transient component was carried by a low- conductance channel. 7. Certain compounds with insecticidal action (ryanodine, S-bioallethrin, deltamethrin and avermectin) did not affect calcium channel currents in these cells. 8. These data suggest that there are two types of Ca2+ channels present in locust neurones. These channel types have properties differing from the T-, L- and N-type channels found in vertebrates and, furthermore, were not targets for the insecticides we tested.


2008 ◽  
Vol 87 (2) ◽  
pp. 137-141 ◽  
Author(s):  
G. Chung ◽  
J.N. Rhee ◽  
S.J. Jung ◽  
J.S. Kim ◽  
S.B. Oh

Eugenol, a natural congener of capsaicin, is a routine analgesic agent in dentistry. We have recently demonstrated the inhibition of CaV2.2 calcium channel and sodium channel currents to be molecular mechanisms underlying the analgesic effect of eugenol. We hypothesized that CaV2.3 channels are also modulated by eugenol and investigated its mode of action using the whole-cell patch-clamp technique in a heterologous expression system. Eugenol inhibited calcium currents in the E52 cell line, stably expressing the human CaV2.3 calcium channels, where TRPV1 is not endogenously expressed. The extent of current inhibition was not significantly different between naïve E52 cells and TRPV1-expressing E52 cells, suggesting no involvement of TRPV1. In contrast, TRPV1 activation is prerequisite for the inhibition of CaV2.3 calcium channels by capsaicin. The results indicate that eugenol has mechanisms distinct from those of capsaicin for modulating CaV2.3 channels. We suggest that inhibition of CaV2.3 channels by eugenol might contribute to its analgesic effect.


2002 ◽  
Vol 282 (1) ◽  
pp. G16-G22 ◽  
Author(s):  
Yu Wang ◽  
Vera Prpic ◽  
Gary M. Green ◽  
Joseph R. Reeve ◽  
Rodger A. Liddle

CCK is secreted into the blood from intestinal endocrine cells following ingestion of a meal. Recently, it has been demonstrated that the ability of certain foods to stimulate CCK release is mediated by endogenously produced CCK-releasing factors. A newly discovered luminal CCK-releasing factor (LCRF) is secreted into the intestine, where it stimulates CCK secretion. However, the mechanism whereby LCRF affects intestinal epithelial cells is unknown. The current study was designed to determine whether LCRF has a direct effect on CCK cells to stimulate hormone secretion. In dispersed human intestinal mucosal cells, LCRF (5–200 nM) significantly stimulated CCK release in a concentration-dependent manner. This stimulatory effect was absent in calcium-free media and was inhibited by the L-type calcium-channel blockers diltiazem and nifedipine. To examine direct cellular effects of LCRF on CCK cells, further studies were conducted in the CCK-containing enteroendocrine cell line STC-1. As in native cells, LCRF significantly stimulated CCK release from STC-1 cells in a calcium-dependent manner. In cells loaded with a calcium-sensitive dye, LCRF stimulation produced a rapid increase in intracellular calcium. To examine the electrophysiological basis for this stimulation, whole cell recordings were made from STC-1 cells. Whole cell calcium currents were identified under basal conditions; moreover, calcium-channel activity was increased by LCRF. These studies demonstrate that 1) LCRF has a direct effect on human intestinal cells to stimulate CCK secretion, 2) stimulated hormone release is calcium dependent, and 3) LCRF activates calcium currents in CCK cells, which leads to CCK secretion.


1992 ◽  
Vol 68 (1) ◽  
pp. 85-92 ◽  
Author(s):  
M. Mynlieff ◽  
K. G. Beam

1. Calcium channel currents were measured with the whole-cell patch clamp technique in cultured, identified mouse motoneurons. Three components of current were operationally defined on the basis of voltage dependence, kinetics, and pharmacology. 2. Test potentials to -50 mV or greater (10 mM external Ca2+) elicited a low-voltage activated T-type current that was transient (decaying to baseline in less than 200 ms) and had a relatively slow time to peak (20-50 ms). A 1-s prepulse to -45 mV produced approximately half-maximal inactivation of this T current. 3. Two high-voltage activated (HVA) components of current (1 transient and 1 sustained) were activated by test potentials to -20 mV or greater (10 mM external Ca2+). A 1-s prepulse to -35 mV produced approximately half-maximal inactivation of the transient component without affecting the sustained component. 4. When Ba2+ was substituted for Ca2+ as the charge carrier, activation of the HVA components was shifted in the hyperpolarizing direction, and the relative amplitude of the transient HVA component was reduced. 5. Amiloride (1-2 mM) caused a reversible, partial block of the T current without affecting the HVA components. 6. The dihydropyridine agonist isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-nitro-3- pyridine-carboxylate [(+)-SDZ 202-791, 100 nM-1 microM)] shifted the activation of the sustained component of HVA current to more negative potentials and increased its maximal amplitude. Additionally, (+)-SDZ 202-791 caused the appearance of a slowed component of tail current.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 199 (3) ◽  
pp. 537-548
Author(s):  
W B Alshuaib ◽  
L Byerly

A number of Drosophila learning mutants have defective intracellular second-messenger systems. In an effort to develop techniques that will allow direct measurement of the effects of these mutations on whole-cell neuronal membrane currents, the perforated-patch whole-cell (PPWC) technique has been applied to cleavage-arrested cultured embryonic Drosophila neurons. This technique permits the measurement of membrane currents without disturbing the intracellular environment. As a result of the maintenance of the intracellular environment, Drosophila neuron currents are found to be much more stable than when measured using the conventional whole-cell (CWC) patch-clamp technique. Ca2+ channel currents, which typically 'wash out' within a few minutes of the beginning of CWC recording, are stable for the duration of the seal (tens of minutes) when measured using the PPWC technique. Since the learning mutations dunce and rutabaga disrupt cyclic AMP signalling, the action of externally applied dibutyryl cyclic AMP (db-cAMP) and theophylline on Ca2+ and K+ channel currents were studied. db-cAMP and theophylline enhanced the Ba2+ current, carried by Ca2+ channels, but had no effect on the K+ current in the cleavage-arrested neurons. However, the large variability and reduction in density of Ba2+ and K+ currents raise questions about the suitability of using these cleavage-arrested cells as models for Drosophila neurons.


1992 ◽  
Vol 262 (4) ◽  
pp. F578-F582 ◽  
Author(s):  
P. Dietl ◽  
N. Kizer ◽  
B. A. Stanton

The present study was carried out to characterize the membrane conductive properties of RCCT-28A cells, a continuous cell line derived from rabbit cortical collecting duct (CCD). RCCT-28A cells have many phenotypic properties of acid-secreting intercalated cells (A-IC). Using the whole cell patch-clamp technique, we found that the cells are conductive to Cl-, but not to Na+ or K+. The beta-adrenergic agonists isoproterenol (2 x 10(-6) M) and adenosine 3',5'-cyclic monophosphate (cAMP, 10(-4) M) increased the whole cell Cl- conductance. Protein kinase A (150 nM) in the patch pipette (i.e., intracellular solution) also increased whole cell Cl- conductance. Because isoproterenol increases cAMP levels in these cells, we conclude that isoproterenol stimulates the Cl- conductance by increasing cell cAMP, which in turn activates protein kinase A. In contrast, vasopressin does not increase cAMP in these cells and did not increase the Cl- conductance. In conclusion, these experiments show that RCCT-28A cells, like A-IC, are conductive only to Cl-. Thus RCCT-28A cells are a good model with which to study Cl- channels in the collecting duct.


1998 ◽  
Vol 79 (4) ◽  
pp. 2070-2081 ◽  
Author(s):  
Laura M. Hurley ◽  
Katherine Graubard

Hurley, Laura M. and Katherine Graubard. Pharmacologically and functionally distinct calcium currents of stomatogastric neurons. J. Neurophysiol. 79: 2070–2081, 1998. Previous studies have suggested the presence of different types of calcium channels in different regions of stomatogastric neurons. We sought to pharmacologically separate these calcium channel types. We used two different preparations from different regions of stomatogastric neurons to screen a range of selective calcium channel blockers. The two preparations were isolated cell bodies in culture, in which calcium current was measured directly, and isolated neuromuscular junction, in which synaptic transmission was the indirect assay for presynaptic calcium influx. The selective blockers were two different dihydropyridines, ω-Agatoxin IVA, and ω-Conotoxin GVIA. Cultured cell bodies possessed both high-threshold calcium current and calcium-activated outward current, similar to intact neurons. The calcium current had transient and maintained components, but both components had the same voltage dependence of activation and inactivation. Dihydropyridines at ≥10 μM blocked both high-threshold calcium current and calcium-activated outward current. Nanomolar doses of ω-Agatoxin IVA did not block calcium current, but micromolar doses did. ω-Conotoxin GVIA did not block either current. In contrast, at the neuromuscular junction, dihydropyridines reduced the amplitude of postsynaptic potentials by only a modest amount, whereas ω-Agatoxin IVA at doses as low as 64 nM reduced the amplitude of postsynaptic potentials almost entirely. These effects were presynaptic. ω-Conotoxin GVIA did not change the amplitude of postsynaptic potentials. The different pharmacological profiles of the two isolated preparations suggest that there are at least two different types of calcium channel in stomatogastric neurons and that ω-Agatoxin IVA and dihydropridines can be used to pharmacologically distinguish them.


1994 ◽  
Vol 302 (1) ◽  
pp. 147-154 ◽  
Author(s):  
E J Nelson ◽  
C C R Li ◽  
R Bangalore ◽  
T Benson ◽  
R S Kass ◽  
...  

Thapsigargin (TG), 2,5-t-butylhydroquinone (tBHQ) and cyclopiazonic acid (CPA) all inhibit the initial Ca(2+)-response to thyrotropin-releasing hormone (TRH) by depleting intracellular Ca2+ pools sensitive to inositol 1,4,5-trisphosphate (IP3). Treatment of GH3 pituitary cells for 30 min with 5 nM TG, 500 nM tBHQ or 50 nM CPA completely eliminated the TRH-induced spike in intracellular free Ca2+ ([Ca2+]i). Higher concentrations of TG and tBHQ, but not CPA, were also found to inhibit strongly the activity of L-type calcium channels, as measured by the increase in [Ca2+]i or 45Ca2+ influx stimulated by depolarization. TG and tBHQ blocked high-K(+)-stimulated 45Ca2+ uptake, with IC50 values of 10 and 1 microM respectively. Maximal inhibition of L-channel activity was achieved 15-30 min after drug addition. Inhibition by tBHQ was reversible, whereas inhibition by TG was not. TG and CPA did not affect spontaneous [Ca2+]i oscillations when tested at concentrations adequate to deplete the IP3-sensitive Ca2+ pool. However, 20 microM TG and 10 microM tBHQ blocked [Ca2+]i oscillations completely. The effect of drugs on calcium currents was measured directly by using the patch-clamp technique. When added to the external bath, 10 microM CPA caused a sustained increase in the calcium-channel current amplitude over 8 min, 10 microM tBHQ caused a progressive inhibition, and 10 microM TG caused an enhancement followed by a sustained block of the calcium current over 8 min. In summary, CPA depletes IP3-sensitive Ca2+ stores and does not inhibit voltage-operated calcium channels. At sufficiently low concentrations, TG depletes IP3-sensitive stores without inhibiting L-channel activity, but, for tBHQ, inhibition of calcium channels occurs at concentrations close to those needed to block agonist mobilization of intracellular Ca2+.


1998 ◽  
Vol 79 (2) ◽  
pp. 753-762 ◽  
Author(s):  
David J. Adams ◽  
Carlo Trequattrini

Adams, David J. and Carlo Trequattrini. Opioid receptor-mediated inhibition of ω-conotoxin GVIA-sensitive calcium channel currents in rat intracardiac neurons. J. Neurophysiol. 79: 753–762, 1998. Modulation of depolarization-activated ionic conductances by opioid receptor agonists was investigated in isolated parasympathetic neurons from neonatal rat intracardiac ganglia by using the whole cell perforated patch clamp technique. Met-enkephalin (10 μM) altered the action potential waveform, reducing the maximum amplitude and slowing the rate of rise and repolarization but the afterhyperpolarization was not appreciably altered. Under voltage clamp, 10 μM Met-enkephalin selectively and reversibly inhibited the peak amplitude of high-voltage–activated Ca2+ channel currents elicited at 0 mV by ∼52% and increased three- to fourfold the time to peak. Met-enkephalin had no effect on the voltage dependence of steady-state inactivation but shifted the voltage dependence of activation to more positive membrane potentials whereby stronger depolarization was required to open Ca2+ channels. Half-maximal inhibition of Ba2+ current ( I Ba) amplitude was obtained with 270 nM Met-enkephalin or Leu-enkephalin. The opioid receptor subtype selective agonists, DAMGO and DADLE, but not DPDPE, inhibited I Ba and were antagonized by the opioid receptor antagonists, naloxone and naltrindole with IC50s of 84 nM and 1 μM, respectively. The κ-opioid receptor agonists, bremazocine and dynorphin A, did not affect Ca2+ channel current amplitude or kinetics. Taken together, these data suggest that enkephalin-induced inhibition of Ca2+ channels in rat intracardiac neurons is mediated primarily by the μ-opioid receptor type. Addition of Met-enkephalin after exposure to 300 nM ω-conotoxin GVIA, which blocked ∼75% of the total Ca2+ channel current, failed to cause a further decrease of the residual current. Met-enkephalin inhibited the ω-conotoxin GVIA-sensitive but not the ω-conotoxin-insensitive I Ba in rat intracardiac neurons. Dialysis of the cell with a GTP-free intracellular solution or preincubation of the neurons in Pertussis toxin (PTX) abolished the attenuation of I Ba by Met-enkephalin, suggesting the involvement of a PTX-sensitive Gprotein in the signal transduction pathway. The activation of μ-opioid receptors and subsequent inhibition of N-type Ca2+ channels in the soma and terminals of postganglionic intracardiac neurons is likely to inhibit the release of ACh and thereby regulate vagal transmission to the mammalian heart.


Sign in / Sign up

Export Citation Format

Share Document