Enhancement of Ectopic Discharge in Regenerating A- and C-Fibers by Inflammatory Mediators

2009 ◽  
Vol 101 (6) ◽  
pp. 2762-2774 ◽  
Author(s):  
Lydia Grossmann ◽  
Natalia Gorodetskaya ◽  
Ralf Baron ◽  
Wilfrid Jänig

Afferent A- and C-fibers regenerating into a nerve following peripheral nerve injury are exposed to inflammatory mediators released by Schwann cells, resident and invading macrophages, and other inflammatory cells. Here we tested the hypothesis that ongoing and evoked activity in these afferent fibers are enhanced by a mixture of inflammatory mediators [inflammatory soup (IS)] applied to the injured nerve. Using in vivo electrophysiology, regenerating afferent nerve fibers were studied 7–14 days after sural nerve crush lesion. The ectopic activity was studied before and ≤1.5 h after topical application of IS to the nerve in 73 C-fibers and 22 A-fibers that were either ectopically active before application of IS (61 C-fibers, 17 A-fibers) or recruited by IS (12 C-fibers, 5 A-fibers). More than one half of the C-fibers were activated by IS for ≤90 min after its removal. The majority of mechano- (23/38) and heat-sensitive (29/35) C-fibers as well as mechano-sensitive A-fibers (12/17) decreased their activation thresholds and/or increased the response magnitude to mechanical and/or heat stimulation of the nerve. Noxious cold sensitivity, but not nonnoxious cold sensitivity, was weakly influenced by IS. Some initially nonresponsive C- and A-fibers developed new ectopic properties, i.e., were recruited, and exhibited ongoing activity and/or could be activated by physiological stimuli after application of IS. The results suggest that inflammatory mediators may be critical to enhance ectopic excitability of regenerating afferent nerve fibers. These peripheral mechanisms may be important triggering and maintaining neuropathic pain.

2014 ◽  
Vol 111 (10) ◽  
pp. 2071-2083 ◽  
Author(s):  
Alina Teliban ◽  
Fabian Bartsch ◽  
Marek Struck ◽  
Ralf Baron ◽  
Wilfrid Jänig

Intact and injured cutaneous C-fibers in the rat sural nerve are cold sensitive, heat sensitive, and/or mechanosensitive. Cold-sensitive fibers are either low-threshold type 1 cold sensitive or high-threshold type 2 cold sensitive. The hypothesis was tested, in intact and injured afferent nerve fibers, that low-threshold cold-sensitive afferent nerve fibers are activated by the transient receptor potential melastatin 8 (TRPM8) agonist menthol, whereas high-threshold cold-sensitive C-fibers and cold-insensitive afferent nerve fibers are menthol insensitive. In anesthetized rats, activity was recorded from afferent nerve fibers in strands isolated from the sural nerve, which was either intact or crushed 6–12 days before the experiment distal to the recording site. In all, 77 functionally identified afferent C-fibers (30 intact fibers, 47 injured fibers) and 34 functionally characterized A-fibers (11 intact fibers, 23 injured fibers) were tested for their responses to menthol applied to their receptive fields either in the skin (10 or 20%) or in the nerve (4 or 8 mM). Menthol activated all intact ( n = 12) and 90% of injured ( n = 20/22) type 1 cold-sensitive C-fibers; it activated no intact type 2 cold-sensitive C-fibers ( n = 7) and 1/11 injured type 2 cold-sensitive C-fibers. Neither intact nor injured heat- and/or mechanosensitive cold-insensitive C-fibers ( n = 25) and almost no A-fibers ( n = 2/34) were activated by menthol. These results strongly argue that cutaneous type 1 cold-sensitive afferent fibers are nonnociceptive cold fibers that use the TRPM8 transduction channel.


2008 ◽  
Vol 104 (5) ◽  
pp. 1394-1401 ◽  
Author(s):  
David F. Donnelly

The mechanism by which action potentials (APs) are generated in afferent nerve fibers in the carotid body is unknown, but it is generally speculated to be release of an excitatory transmitter and synaptic depolarizing events. However, previous results suggested that Na+ channels in the afferent nerve fibers play an important role in this process. To better understand the potential mechanism by which Na+ channels may generate APs, a mathematical model of chemoreceptor nerve fibers that incorporated Hodgkin-Huxley-type Na+ channels with kinetics of activation and inactivation, as determined previously from recordings of petrosal chemoreceptor neurons, was constructed. While the density of Na+ channels was kept constant, spontaneous APs arose in nerve terminals as the axonal diameter was reduced to that in rat carotid body. AP excitability and pattern were similar to those observed in chemoreceptor recordings: 1) a random pattern at low- and high-frequency discharge rates, 2) a high sensitivity to reductions in extracellular Na+ concentration, and 3) a variation in excitability that increased with AP generation rate. Taken together, the results suggest that an endogenous process in chemoreceptor nerve terminals may underlie AP generation, a process independent of synaptic depolarizing events.


1995 ◽  
Vol 74 (3) ◽  
pp. 1020-1027 ◽  
Author(s):  
M. Michaelis ◽  
K. H. Blenk ◽  
W. Janig ◽  
C. Vogel

1. Spontaneous activity and ectopic mechanical excitability of axotomized unmyelinated and myelinated fibers in the sural nerve were examined in anesthetized rats. The analysis was performed within 30 h after the nerve lesion using single-fiber recordings that were performed proximal to the severed nerve end. 2. Among all unmyelinated fibers tested (n = 865), 4-8% exhibited persistent spontaneous activity of low and irregular frequency. The percentage of spontaneously active C fibers did not change significantly during the first 30 h. Only 6 of 796 A fibers had spontaneous activity. 3. Mechanical stimulation of the cut nerve end excited 5-8% of all C fibers under investigation. No development with time could be detected in the frequency of mechanically excitable C fibers. In contrast, beginning 6 h after nerve transection, the number of mechanically excitable A fibers rose with time, reaching 27% after 22-30 h. 4. Among the A fibers (C fibers) that exhibited mechanical excitability or spontaneous activity, only 4% (25%) had both properties, whereas 96% (75%) were either mechanosensitive or spontaneously active. 5. With time after the nerve lesion, the mean discharge rate of all spontaneously discharging C fibers decreased significantly from 49 imp/min (0.5-9 h after nerve lesion) to 11 imp/min after 22-30 h. The mean discharge rate of C fibers exhibiting solely spontaneous activity and those C fibers that were additionally mechanosensitive did not differ significantly.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 60 (2) ◽  
pp. 202-210 ◽  
Author(s):  
Judith M. Lionarons ◽  
Govert Hoogland ◽  
Ruben G. F. Hendriksen ◽  
Catharina G. Faber ◽  
Danique M. J. Hellebrekers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document