unmyelinated fibers
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 8)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leif A. Havton ◽  
Natalia P. Biscola ◽  
Esther Stern ◽  
Plamen V. Mihaylov ◽  
Chandrashekhar A. Kubal ◽  
...  

AbstractThe vagus nerve provides motor, sensory, and autonomic innervation of multiple organs, and electrical vagus nerve stimulation (VNS) provides an adjunctive treatment option for e.g. medication-refractory epilepsy and treatment-resistant depression. The mechanisms of action for VNS are not known, and high-resolution anatomical mapping of the human vagus nerve is needed to better understand its functional organization. Electron microscopy (EM) is required for the detection of both myelinated and unmyelinated axons, but access to well-preserved human vagus nerves for ultrastructural studies is sparse. Intact human vagus nerve samples were procured intra-operatively from deceased organ donors, and tissues were immediately immersion fixed and processed for EM. Ultrastructural studies of cervical and sub-diaphragmatic vagus nerve segments showed excellent preservation of the lamellated wall of myelin sheaths, and the axolemma of myelinated and unmyelinated fibers were intact. Microtubules, neurofilaments, and mitochondria were readily identified in the axoplasm, and the ultrastructural integrity of Schwann cell nuclei, Remak bundles, and basal lamina was also well preserved. Digital segmentation of myelinated and unmyelinated axons allowed for determination of fiber size and myelination. We propose a novel source of human vagus nerve tissues for detailed ultrastructural studies and mapping to support efforts to refine neuromodulation strategies, including VNS.


2021 ◽  
Author(s):  
Emanuele Plebani ◽  
Natalia P. Biscola ◽  
Leif A. Havton ◽  
Bartek Rajwa ◽  
Abida Sanjana Shemonti ◽  
...  

Abstract Axonal characterizations of connectomes in healthy and disease phenotypes are surprisingly incomplete and biased because unmyelinated axons, the most prevalent type of fibers in the nervous system, have largely been ignored as their quantitative assessment quickly becomes unmanageable as the number of axons increases. Herein, we introduce the first prototype of a high-throughput processing pipeline for automated segmentation of unmyelinated fibers. Our team has used transmission electron microscopy images of vagus and pelvic nerves in rats. All unmyelinated axons in these images are individually annotated and used as labeled data to train and validate a deep instance segmentation network. We investigate the effect of different training strategies on the overall segmentation accuracy of the network. We extensively validate the segmentation algorithm as a stand-alone segmentation tool as well as in an expert-in-the-loop hybrid segmentation setting with preliminary, albeit remarkably encouraging results. Our algorithm achieves an instance-level F1 score of between 0.7 and 0.9 on various test images in the stand-alone mode and reduces expert annotation labor by 80% in the hybrid setting. We hope that this new high-throughput segmentation pipeline will enable quick and accurate characterization of unmyelinated fibers at scale and become instrumental in significantly advancing our understanding of connectomes in both the peripheral and the central nervous systems.


Author(s):  
L.M. Saarkoppel ◽  
◽  
O.P. Nepershina ◽  
A.P. Lagutina ◽  
◽  
...  

Abstract: The earliest and most frequent manifestation of HAVS is limb polyneuropathy with sensory disorders. The study was conducted in order to assess the various types of sensory modality disorders by methods of functional diagnostics in HAVS. The main group of patients with an established diagnosis of HAVS and a control group of healthy individuals who have not worked in harmful and dangerous working conditions during their lives were examined. The methods of computer pallesthesiometry, quantitative sensory testing (QST) and stimulation electroneuromyography were used in the study. A comprehensive study revealed disorders of the perception of sensitivity of various modalities (vibration, pain and temperature), which indicated damage to all types of peripheral nerve structures when exposed to local vibration-unmyelinated fibers (C–type), myelinated (A-beta-type) and weakly myelinated (A-delta–type).


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 893
Author(s):  
Kerly Shamyra Silva-Alves ◽  
Francisco Walber Ferreira-da-Silva ◽  
Andrelina Noronha Coelho-de-Souza ◽  
José Henrique Leal-Cardoso

Autonomic diabetic neuropathy (ADN) is a complication of diabetes mellitus (DM), to which there is no specific treatment. In this study, the efficacy of the essential oil of Croton zehntneri (EOCz) in preventing ADN was evaluated in the rat vagus nerve. For the two fastest conducting myelinated types of axons of the vagus nerve, the conduction velocities and rheobase decreased, whilst the duration of the components of the compound action potential of these fibers increased. EOCz completely prevented these DM-induced alterations of the vagus nerve. Unmyelinated fibers were not affected. In conclusion, this investigation demonstrated that EOCz is a potential therapeutic agent for the treatment of ADN.


2021 ◽  
Vol 118 (4) ◽  
pp. e2012685118
Author(s):  
Maria Elena Pero ◽  
Cristina Meregalli ◽  
Xiaoyi Qu ◽  
Grace Ji-eun Shin ◽  
Atul Kumar ◽  
...  

The pathogenesis of chemotherapy-induced peripheral neuropathy (CIPN) is poorly understood. Here, we report that the CIPN-causing drug bortezomib (Bort) promotes delta 2 tubulin (D2) accumulation while affecting microtubule stability and dynamics in sensory neurons in vitro and in vivo and that the accumulation of D2 is predominant in unmyelinated fibers and a hallmark of bortezomib-induced peripheral neuropathy (BIPN) in humans. Furthermore, while D2 overexpression was sufficient to cause axonopathy and inhibit mitochondria motility, reduction of D2 levels alleviated both axonal degeneration and the loss of mitochondria motility induced by Bort. Together, our data demonstrate that Bort, a compound structurally unrelated to tubulin poisons, affects the tubulin cytoskeleton in sensory neurons in vitro, in vivo, and in human tissue, indicating that the pathogenic mechanisms of seemingly unrelated CIPN drugs may converge on tubulin damage. The results reveal a previously unrecognized pathogenic role for D2 in BIPN that may occur through altered regulation of mitochondria motility.


2019 ◽  
Vol 78 (12) ◽  
pp. 1178-1180 ◽  
Author(s):  
Suresh Mohan ◽  
Iván Coto Hernández ◽  
Martin K Selig ◽  
Shinsuke Shibata ◽  
Nate Jowett

Abstract Though unmyelinated fibers predominate axon counts within peripheral nerves, they are frequently excluded in histomorphometric assessment as they cannot be readily resolved by light microscopy. Herein, we demonstrate stain-free resolution of unmyelinated axons in Sox10-Venus mice by widefield fluorescence imaging of sciatic nerve cryosections. Optional staining of cryosections using a rapid and nontoxic myelin-specific dye (FluoroMyelin Red) enables robust synchronous resolution of myelinated and unmyelinated fibers, comprising a high-throughput platform for neural histomorphometry.


2019 ◽  
Vol 7 (1) ◽  
pp. e1993
Author(s):  
Vânia Tognon-Miguel ◽  
Adriana H. Nascimento-Elias ◽  
Maria C. L. Schiavoni ◽  
Amilton A. Barreira
Keyword(s):  

2018 ◽  
Vol 120 (3) ◽  
pp. 1415-1427 ◽  
Author(s):  
Åke Bernhard Vallbo

In the first section, this historical review describes endeavors to develop the method for recording normal nerve impulse traffic in humans, designated microneurography. The method was developed at the Department of Clinical Neurophysiology of the Academic Hospital in Uppsala, Sweden. Microneurography involves the impalement of a peripheral nerve with a tungsten needle electrode. Electrode position is adjusted by hand until the activity of interest is discriminated. Nothing similar had previously been tried in animal preparations, and thus the large number of preceding studies that recorded afferent activity in other mammals did not offer pertinent methodological guidance. For 2 years, the two scientists involved in the research impaled their own nerves with electrodes to test various kinds of needles and explore different neural systems, all the while carefully watching for signs of nerve damage. Temporary paresthesiae were common, whereas enduring sequelae never followed. Single-unit impulse trains could be discriminated, even those originating from unmyelinated fibers. An explanation for the discrimination of unitary impulses using a coarse electrode is inferred based on the electrical characteristics of the electrode placed in the flesh and the impulse shapes, as discussed in the second section of this paper. Microneurography and the microstimulation of single afferents, combined with psychophysical methods and behavioral tests, have generated new knowledge particularly regarding four neural systems, namely the proprioceptive system, the cutaneous mechanoreceptive system, the cutaneous nociceptive system, and the sympathetic efferent system to skin structures and muscular blood vessels. Examples of achievements based on microneurography are presented in the final section.


2017 ◽  
Vol 2 (4) ◽  
pp. 153-161 ◽  
Author(s):  
Florian Struller ◽  
Frank-Jürgen Weinreich ◽  
Philipp Horvath ◽  
Marios-Konstantinos Kokkalis ◽  
Stefan Beckert ◽  
...  

AbstractThe parietal peritoneum (PP) is innervated by somatic and visceral afferent nerves. PP receives sensitive branches from the lower intercostal nerves and from the upper lumbar nerves. Microscopically, a dense network of unmyelinated and myelinated nerve fibers can be found all over the PP. The unmyelinated fibers are thin and are ending just underneath the PP. The myelinated fibers can penetrate the PP to reach the peritoneal cavity, where they lose their myelin sheath and are exposed to somatic and nociceptive stimuli. PP is sensitive to pain, pressure, touch, friction, cutting and temperature. Noxious stimuli are perceived as a localized, sharp pain. The visceral peritoneum (VP) itself is not innervated, but the sub-mesothelial tissue is innervated by the autonomous nerve system. In contrast to the PP, the visceral submesothelium also receives fibers from the vagal nerve, in addition to the spinal nerves. VP responds primarily to traction and pressure; not to cutting, burning or electrostimulation. Painful stimuli of the VP are poorly localized and dull. Pain in a foregut structure (stomach, duodenum or biliary tract) is referred to the epigastric region, pain in a midgut structure (appendix, jejunum, or ileum) to the periumbilical area and pain from a hindgut source (distal colon or rectum) is referred to the lower abdomen or suprapubic region. Peritoneal adhesions can contain nerve endings. Neurotransmitters are acetylcholine, VIP, serotonin, NO, encephalins, CGRP and substance P. Chronic peritoneal pain can be exacerbated by neurogenic inflammation, e.g. by endometriosis.


Sign in / Sign up

Export Citation Format

Share Document