Nonredundant Gap Junction Functions

Physiology ◽  
2003 ◽  
Vol 18 (3) ◽  
pp. 95-99 ◽  
Author(s):  
Thomas W. White

The need for molecular heterogeneity of gap junction channel proteins in vivo has been enigmatic. Recently, functional replacement of one channel gene with another in mice and flies has revealed that cellular health depends not simply on gap junction communication but also requires the correct type of intercellular channel subunit.

2009 ◽  
Vol 101 (4) ◽  
pp. 1774-1780 ◽  
Author(s):  
Ziyi Sun ◽  
Dao-Qi Zhang ◽  
Douglas G. McMahon

Hemi-gap-junction (HGJ) channels of retinal horizontal cells (HCs) function as transmembrane ion channels that are modulated by voltage and calcium. As an endogenous retinal neuromodulator, zinc, which is coreleased with glutamate at photoreceptor synapses, plays an important role in shaping visual signals by acting on postsynaptic HCs in vivo. To understand more fully the regulation and function of HC HGJ channels, we examined the effect of Zn2+ on HGJ channel currents in bass retinal HCs. Hemichannel currents elicited by depolarization in Ca2+-free medium and in 1 mM Ca2+ medium were significantly inhibited by extracellular Zn2+. The inhibition by Zn2+ of hemichannel currents was dose dependent with a half-maximum inhibitory concentration of 37 μM. Compared with other divalent cations, Zn2+ exhibited higher inhibitory potency, with the order being Zn2+ > Cd2+ ≈ Co2+ > Ca2+ > Ba2+ > Mg2+. Zn2+ and Ca2+ were found to modulate HGJ channels independently in additivity experiments. Modification of histidine residues with N-bromosuccinimide suppressed the inhibitory action of Zn2+, whereas modification of cysteine residues had no significant effect on Zn2+ inhibition. Taken together, these results suggest that zinc acts on HGJ channels in a calcium-independent way and that histidine residues on the extracellular domain of HGJ channels mediate the inhibitory action of zinc.


1998 ◽  
Vol 143 (6) ◽  
pp. 1725-1734 ◽  
Author(s):  
G.Y. Huang ◽  
E.S. Cooper ◽  
K. Waldo ◽  
M.L. Kirby ◽  
N.B. Gilula ◽  
...  

Previous studies showed that conotruncal heart malformations can arise with the increase or decrease in α1 connexin function in neural crest cells. To elucidate the possible basis for the quantitative requirement for α1 connexin gap junctions in cardiac development, a neural crest outgrowth culture system was used to examine migration of neural crest cells derived from CMV43 transgenic embryos overexpressing α1 connexins, and from α1 connexin knockout (KO) mice and FC transgenic mice expressing a dominant-negative α1 connexin fusion protein. These studies showed that the migration rate of cardiac neural crest was increased in the CMV43 embryos, but decreased in the FC transgenic and α1 connexin KO embryos. Migration changes occurred in step with connexin gene or transgene dosage in the homozygous vs. hemizygous α1 connexin KO and CMV43 embryos, respectively. Dye coupling analysis in neural crest cells in the outgrowth cultures and also in the living embryos showed an elevation of gap junction communication in the CMV43 transgenic mice, while a reduction was observed in the FC transgenic and α1 connexin KO mice. Further analysis using oleamide to downregulate gap junction communication in nontransgenic outgrowth cultures showed that this independent method of reducing gap junction communication in cardiac crest cells also resulted in a reduction in the rate of crest migration. To determine the possible relevance of these findings to neural crest migration in vivo, a lacZ transgene was used to visualize the distribution of cardiac neural crest cells in the outflow tract. These studies showed more lacZ-positive cells in the outflow septum in the CMV43 transgenic mice, while a reduction was observed in the α1 connexin KO mice. Surprisingly, this was accompanied by cell proliferation changes, not in the cardiac neural crest cells, but in the myocardium— an elevation in the CMV43 mice vs. a reduction in the α1 connexin KO mice. The latter observation suggests that cardiac neural crest cells may have a role in modulating growth and development of non–neural crest– derived tissues. Overall, these findings suggest that gap junction communication mediated by α1 connexins plays an important role in cardiac neural crest migration. Furthermore, they indicate that cardiac neural crest perturbation is the likely underlying cause for heart defects in mice with the gain or loss of α1 connexin function.


1995 ◽  
Vol 3 (4) ◽  
pp. 353-365 ◽  
Author(s):  
Glenn I. Fishman ◽  
Yang Gao ◽  
Elliot L. Hertzberg ◽  
David C. Spray

Author(s):  
Takayuki Okamoto ◽  
Haruki Usuda ◽  
Tetsuya Tanaka ◽  
Koichiro Wada ◽  
Motomu Shimaoka

Angiogenesis, the sprout and growth of new blood vessels from existing vasculature, is an important process of tumor development for the supply of oxygen and nutrition to cancer cells. Endothelial cell is a critical player in angiogenic process by modulating cell proliferation, cell motility, and cell morphology in the response to pro-angiogenic factors and environments provided by tumor and cancer cells. Recent in vivo and in vitro studies have revealed that gap junction of endothelial cells also participates in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexins expression in endothelial cells, whereas endothelial connexins involve in angiogenic tube formation and cell migration of endothelial cells via both gap junction channel function dependent or independent mechanisms.  In particular, connexin might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during angiogenic processes. Here, we review the implication for endothelial gap junction and cellular mechanics in vascular angiogenesis.


2021 ◽  
Vol 12 (1) ◽  
pp. 46-51
Author(s):  
Guangliang Wang ◽  
Xuemei Wu

Abstract Epilepsy is one of the most prevalent neurological disorders and can result in neuronal injury and degeneration. Consequently, research into new antiepileptic drugs capable of providing protection against neuronal injury and degeneration is extremely important. Neuronal Cx36 gap junction channels have been found to play an important role in epilepsy; thus, pharmacological interference using Cx36 gap junction channel blockers may be a promising strategy for disrupting the synchronization of neurons during seizure activity and protecting neurons. Based on these promising findings, several in vivo and in vitro studies are ongoing and the first encouraging results have been published. The results bring hope that neurons can be protected from injury and degeneration in patients with epilepsy, which is currently impossible.


Sign in / Sign up

Export Citation Format

Share Document