scholarly journals Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know?

Physiology ◽  
2020 ◽  
Vol 35 (4) ◽  
pp. 261-274 ◽  
Author(s):  
Lu Jiang ◽  
Bernd Schnabl

The gut and the liver have a bidirectional communication via the biliary system and the portal vein. The intestinal microbiota and microbial products play an important role for modulating liver diseases such as alcohol-associated liver disease, non-alcoholic fatty liver disease and steatohepatitis, and cholestatic liver diseases. Here, we review the role of the gut microbiota and its products for the pathogenesis and therapy of chronic liver diseases.

Metabolism ◽  
2017 ◽  
Vol 71 ◽  
pp. 182-197 ◽  
Author(s):  
Michael Doulberis ◽  
Georgios Kotronis ◽  
Dimitra Gialamprinou ◽  
Jannis Kountouras ◽  
Panagiotis Katsinelos

2010 ◽  
Vol 120 (6) ◽  
pp. 239-250 ◽  
Author(s):  
Elena Lima-Cabello ◽  
María Victoria García-Mediavilla ◽  
María E. Miquilena-Colina ◽  
Javier Vargas-Castrillón ◽  
Tamara Lozano-Rodríguez ◽  
...  

NAFLD (non-alcoholic fatty liver disease) is one of the most frequent chronic liver diseases worldwide. The metabolic factors associated with NAFLD are also determinants of liver disease progression in chronic HCV (hepatitis C virus) infection. It has been reported that, besides inducing hepatic fatty acid biosynthesis, LXR (liver X receptor) regulates a set of inflammatory genes. We aimed to evaluate the hepatic expression of LXRα and its lipogenic and inflammatory targets in 43 patients with NAFLD, 44 with chronic HCV infection and in 22 with histologically normal liver. Real-time PCR and Western blot analysis were used to determine hepatic expression levels of LXRα and related lipogenic and inflammatory mediators in the study population. We found that the LXRα gene and its lipogenic targets PPAR-γ (peroxisome-proliferator-activated receptor-γ), SREBP (sterol-regulatory-element-binding protein)-1c, SREBP-2 and FAS (fatty acid synthase) were overexpressed in the liver of NAFLD and HCV patients who had steatosis. Moreover, up-regulation of inflammatory genes, such as TNF (tumour necrosis factor)-α, IL (interleukin)-6, OPN (osteopontin), iNOS (inducible NO synthase), COX (cyclo-oxygenase)-2 and SOCS (suppressors of cytokine signalling)-3, was observed in NAFLD and HCV patients. Interestingly, TNF-α, IL-6 and osteopontin gene expression was lower in patients with steatohepatitis than in those with steatosis. In conclusion, hepatic expression of LXRα and its related lipogenic and inflammatory genes is abnormally increased in NAFLD and HCV patients with steatosis, suggesting a potential role of LXRα in the pathogenesis of hepatic steatosis in these chronic liver diseases.


2019 ◽  
Vol 11 (4) ◽  
pp. 189-191
Author(s):  
Amir Anushiravani ◽  
Sadaf Ghajarieh Sepanlou

There has been an increase in the burden of liver diseases in Iran, with an increasing trend from communicable to non-communicable diseases. Almost 5400 deaths were due to chronic liver diseases in 2017. We aim to provide a concise update on the epidemiological trends of liver diseases in Iran. Estimations of deaths, disability-adjusted life years, prevalence of chronic liver diseases and cirrhosis in Iran with its common etiologies have been reported. We investigated the major causes of chronic liver diseases in Iran, we have reported our hepatology research centers, and also we have depicted the future of liver diseases in Iran. In 2017, there was a rising trend in chronic liver diseases in Iran. The most common etiologies for chronic liver disease were chronic hepatitis B, chronic hepatitis C, and non-alcoholic steatohepatitis with highest mortalities due to liver cancer and hepatitis C. The prevalence of HBV infection has decreased from 2.9% to 1.3% with effective vaccination, but new cases are still seen due to perinatal transmission. Treatment of HCV has dramatically changed with new drugs which are being produced by local pharmaceuticals at a low cost. The main obstacle in its elimination is finding patients and linkage to care. More than a third of our population have non-alcoholic fatty liver disease in which central obesity had a stronger association than weight itself. Iran has a high burden of liver diseases. The Ministry of Health has effectively controlled hepatitis B and is working towards the World Health WHO’s goals for hepatitis C by 2030. This being said, non-alcoholic fatty liver disease is becoming a major threat to our nation’s health and quality of life.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Natalia Vallianou ◽  
Gerasimos Socrates Christodoulatos ◽  
Irene Karampela ◽  
Dimitrios Tsilingiris ◽  
Faidon Magkos ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.


2019 ◽  
Vol 38 (3) ◽  
pp. 81-88 ◽  
Author(s):  
Chyntia Olivia Maurine JASIRWAN ◽  
Cosmas Rinaldi Adithya LESMANA ◽  
Irsan HASAN ◽  
Andri Sanityosos SULAIMAN ◽  
Rino Alvani GANI

Sign in / Sign up

Export Citation Format

Share Document