scholarly journals Role of gut microbiota in the development of non-alcoholic fatty liver disease

2019 ◽  
Vol 3 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Xuemei Wang ◽  
Jialin Xia ◽  
Changtao Jiang
Metabolism ◽  
2017 ◽  
Vol 71 ◽  
pp. 182-197 ◽  
Author(s):  
Michael Doulberis ◽  
Georgios Kotronis ◽  
Dimitra Gialamprinou ◽  
Jannis Kountouras ◽  
Panagiotis Katsinelos

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Natalia Vallianou ◽  
Gerasimos Socrates Christodoulatos ◽  
Irene Karampela ◽  
Dimitrios Tsilingiris ◽  
Faidon Magkos ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.


2019 ◽  
Vol 38 (3) ◽  
pp. 81-88 ◽  
Author(s):  
Chyntia Olivia Maurine JASIRWAN ◽  
Cosmas Rinaldi Adithya LESMANA ◽  
Irsan HASAN ◽  
Andri Sanityosos SULAIMAN ◽  
Rino Alvani GANI

2021 ◽  
Vol 10 (5) ◽  
pp. 1081
Author(s):  
Mikkel Parsberg Werge ◽  
Adrian McCann ◽  
Elisabeth Douglas Galsgaard ◽  
Dorte Holst ◽  
Anne Bugge ◽  
...  

The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocysteine will also be increased due to impairment of the folate and methionine cycles. The key enzymes of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in animal models. A causative link between the TSP and NAFLD has not been established. However, dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to NAFLD may reveal mechanisms involved in the development and progression of NAFLD.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1719
Author(s):  
Valentina Castillo ◽  
Fernanda Figueroa ◽  
Karoll González-Pizarro ◽  
Paz Jopia ◽  
Claudia Ibacache-Quiroga

Non-alcoholic fatty liver disease (NAFLD) is a chronic non-communicable disease, with a prevalence of 25% worldwide. This pathology is a multifactorial illness, and is associated with different risks factors, including hypertension, hyperglycemia, dyslipidemia, and obesity. Beside these predisposing features, NAFLD has been related to changes in the microbiota, which favor the disease progression. In this context, the modulation of the gut microbiota has emerged as a new therapeutic target for the prophylaxis and treatment of NAFLD. This review describes the changes in the gut microbiota associated with NAFLD and the effect of probiotics, prebiotics, and synbiotics on the gut microbiota, liver damage, anthropometric parameters, blood lipids, inflammation markers and insulin resistance in these patients.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 687
Author(s):  
Daniela Gabbia ◽  
Luana Cannella ◽  
Sara De De Martin

A peculiar role for oxidative stress in non-alcoholic fatty liver disease (NAFLD) and its transition to the inflammatory complication non-alcoholic steatohepatitis (NASH), as well as in its threatening evolution to hepatocellular carcinoma (HCC), is supported by numerous experimental and clinical studies. NADPH oxidases (NOXs) are enzymes producing reactive oxygen species (ROS), whose abundance in liver cells is closely related to inflammation and immune responses. Here, we reviewed recent findings regarding this topic, focusing on the role of NOXs in the different stages of fatty liver disease and describing the current knowledge about their mechanisms of action. We conclude that, although there is a consensus that NOX-produced ROS are toxic in non-neoplastic conditions due to their role in the inflammatory vicious cycle sustaining the transition of NAFLD to NASH, their effect is controversial in the neoplastic transition towards HCC. In this regard, there are indications of a differential effect of NOX isoforms, since NOX1 and NOX2 play a detrimental role, whereas increased NOX4 expression appears to be correlated with better HCC prognosis in some studies. Further studies are needed to fully unravel the mechanisms of action of NOXs and their relationships with the signaling pathways modulating steatosis and liver cancer development.


Sign in / Sign up

Export Citation Format

Share Document