Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney

2008 ◽  
Vol 33 (3) ◽  
pp. 341-354 ◽  
Author(s):  
Jerry Wright ◽  
Marcelo M. Morales ◽  
Jackson Sousa-Menzes ◽  
Debora Ornellas ◽  
Jennifer Sipes ◽  
...  

Dent disease has multiple defects attributed to proximal tubule malfunction including low-molecular-weight proteinuria, aminoaciduria, phosphaturia, and glycosuria. To understand the changes in kidney function of the Clc5 chloride/proton exchanger gene knockout mouse model of Dent disease, we examined gene expression profiles from proximal S1 and S2 tubules of mouse kidneys. We found many changes in gene expression not known previously to be altered in this disease. Genes involved in lipid metabolism, organ development, and organismal physiological processes had the greatest number of significantly changed transcripts. In addition, genes of catalytic activity and transporter activity also had a great number of changed transcripts. Overall, 720 genes are expressed differentially in the proximal tubules of the Dent Clcn5 knockout mouse model compared with those of control wild-type mice. The fingerprint of these gene changes may help us to understand the phenotype of Dent disease.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1367-1367
Author(s):  
Christine Gilling ◽  
Amit Mittal ◽  
Vincent Nganga ◽  
Vicky Palmer ◽  
Dennis D. Weisenburger ◽  
...  

Abstract Abstract 1367 Previously, we have shown that gene expression profiles (GEP) of CLL cells from lymph nodes (LN), bone marrow (BM), and peripheral blood (PB) are significantly different from each other. Among the major pathways associated with differential gene expression, a “tolerogenic signature” involved in host immune tolerance is significant in regulating CLL progression. The genes associated with the tolerogenic signature are significantly differentially expressed in patient LN-CLL compared to BM-CLL and PB-CLL, suggesting that LN-CLL cells induce this immune tolerance. From 83 differentially expressed genes identified by GEP that are associated with immune dysregulation, we selected eleven genes (CAV1, PTPN6, PKCb, ZWINT, IL2Ra, CBLC, CDC42, ZNF175, ZNF264, IL10, and HLA-G) for validation studies to determine whether these genes are also dysregulated in the Emu-TCL1 mouse model of CLL. The results demonstrate a trend of upregulation of these genes as determined by qRT-PCR in the LN-tumor microenvironment. To further evaluate the kinetics of selected gene expression during tumor progression, we determined the expression levels of Cav1, Ptpn6, and Pkcb at 12, 24, and 36 weeks of CLL development in the Em-TCL1 mouse model. We found that the expression of all three genes increased as a function of age, indicating a correlation of gene expression with disease progression. In addition, as CLL progressed in these mice there was a marked decrease in CD4+ and CD8+ T cells. The murine data were further validated using CLL cells from the same patients with indolent versus aggressive disease indicating a similar trend in expression as CLL progressed (n=4). Furthermore, patient data analyzed by Kaplan Meier analyses of the expression levels of the selected genes indicated a significant association between down-regulation of PTPN6 (p=0.031) and up-regulation of ZWINT (p<0.001) with clinical outcome as determined by a shorter time to treatment (p<0.05). Functional analysis by knockdown of CAV1 and PKCb in primary patient CLL cells determined by MTT assay showed a decrease in proliferation following knockdown of these genes (p<0.005). Protein-interaction modeling revealed regulation of CAV1 and PTPN6 by one another. Additionally, the PTPN6 protein regulates B cell receptor (BCR) signaling and subsequently the BCR regulates PKCb. Therefore, these data from both mice and humans with CLL, argue that an aggressive disease phenotype is paralleled by expression of genes associated with immune suppression. In particular, evidence presented here suggests, dysregulation of CAV1, PTPN6, ZWINT, and PKCb expression promotes CLL progression. Disclosures: No relevant conflicts of interest to declare.


BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Kristy Offerman ◽  
Armin Deffur ◽  
Olivia Carulei ◽  
Robert Wilkinson ◽  
Nicola Douglass ◽  
...  

2018 ◽  
Vol 33 (1) ◽  
pp. 928-941 ◽  
Author(s):  
Tsukasa Kanetake ◽  
Takayuki Sassa ◽  
Koki Nojiri ◽  
Megumi Sawai ◽  
Satoko Hattori ◽  
...  

2020 ◽  
Author(s):  
Reza Yarani ◽  
Oana Palasca ◽  
Nadezhda T. Doncheva ◽  
Christian Anthon ◽  
Bartosz Pilecki ◽  
...  

1.AbstractBACKGROUND & AIMSUlcerative colitis (UC) is an inflammatory bowel disorder with unknown etiology. Given its complex nature, in vivo studies to investigate its pathophysiology is vital. Animal models play an important role in molecular profiling necessary to pinpoint mechanisms that contribute to human disease. Thus, we aim to identify common conserved gene expression signatures and differentially regulated pathways between human UC and a mouse model hereof, which can be used to identify UC patients from healthy individuals and to suggest novel treatment targets and biomarker candidates.METHODSTherefore, we performed high-throughput total and small RNA sequencing to comprehensively characterize the transcriptome landscape of the most widely used UC mouse model, the dextran sodium sulfate (DSS) model. We used this data in conjunction with publicly available human UC transcriptome data to compare gene expression profiles and pathways.RESULTSWe identified differentially regulated protein-coding genes, long non-coding RNAs and microRNAs from colon and blood of UC mice and further characterized the involved pathways and biological processes through which these genes may contribute to disease development and progression. By integrating human and mouse UC datasets, we suggest a set of 51 differentially regulated genes in UC colon and blood that may improve molecular phenotyping, aid in treatment decisions, drug discovery and the design of clinical trials.CONCLUSIONGlobal transcriptome analysis of the DSS-UC mouse model supports its use as an efficient high-throughput tool to discover new targets for therapeutic and diagnostic applications in human UC through identifying relationships between gene expression and disease phenotype.


2014 ◽  
Vol 44 (2) ◽  
pp. 143-150
Author(s):  
Ying KUANG ◽  
Lei HUANG ◽  
Jie YANG ◽  
Wei JIN ◽  
WenYing MAO ◽  
...  

2009 ◽  
Vol 401 (1-2) ◽  
pp. 90-99 ◽  
Author(s):  
Joo-Won Park ◽  
Eun-Sook Park ◽  
Eun Nam Choi ◽  
Hae-Young Park ◽  
Sung-Chul Jung

Gene ◽  
2004 ◽  
Vol 340 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Sujong Kim ◽  
Insuk Sohn ◽  
Joon-Ik Ahn ◽  
Ki-Hwan Lee ◽  
Yeon Sook Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document