Transcriptional response of skeletal muscle to a low-protein gestation diet in porcine offspring accumulates in growth- and cell cycle-regulating pathways

2012 ◽  
Vol 44 (16) ◽  
pp. 811-818 ◽  
Author(s):  
Michael Oster ◽  
Eduard Murani ◽  
Cornelia C. Metges ◽  
Siriluck Ponsuksili ◽  
Klaus Wimmers

Inadequate maternal protein supply during gestation represents an environmental factor that affects physiological signaling pathways with long-term consequences for growth, function, and structure of various tissues. Hypothesizing that the offspring's transcriptome is persistently altered by maternal diets, we used a porcine model to monitor the longitudinal expression changes in muscle to identify pathways relevant to fetal initiation of postnatal growth and development. German Landrace gilts were fed isoenergetic gestational diets containing 6.5% (LP) or 12.1% protein. The longissimus dorsi samples were collected from offspring at 94 days postconception (dpc) and 1, 28, and 188 days postnatum (dpn) for expression profiling. At 94 dpc, 1 dpn, and 28 dpn relatively few transcripts (<130) showed an altered abundance between the dietary groups. In fact, at 94 dpc genes of G2/M checkpoint regulation and mitotic roles of Polo-like kinases showed lowered transcript abundance in LP. At 188 dpn 677 transcripts were altered including those related to oxidative phosphorylation, citrate cycle, fatty acid metabolism (higher abundance in LP) and cell cycle regulation (lower abundance in LP). Correspondingly, transcriptional alterations during pre and postnatal development differed considerably among dietary groups, particularly for genes related to cell cycle regulation (G1/S and G2/M checkpoint regulation; cyclines), growth factor signaling (GH, IGF1, mTOR, RAN, VEGF, INSR), lipid metabolism, energy metabolism, and nucleic acid metabolism. In skeletal muscle, fetal programming related to maternal LP diets disturbed gene expression in growth-related pathways into adulthood. Diet-dependent gene expression may hamper proper development, thereby affecting signaling pathways related to energy utilization.

Critical Care ◽  
2018 ◽  
Vol 22 (1) ◽  
Author(s):  
Juliana Monte Real ◽  
Ludmila Rodrigues Pinto Ferreira ◽  
Gustavo Henrique Esteves ◽  
Fernanda Christtanini Koyama ◽  
Marcos Vinícius Salles Dias ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4790-4790
Author(s):  
Paola Neri ◽  
Teresa Calimeri ◽  
Mariateresa Di Martino ◽  
Marco Rossi ◽  
Orietta Eramo ◽  
...  

Abstract Valproic acid (VPA) is a well-tolerated anticonvulsant drug that has been recently recognized as powerful histone deacetylase (HDCA) inhibitor. VPA induces hyperacetylation of histone H3 and H4 and inhibits both class I and II HDCACs. Recently it has been shown that VPA exerts in vitro and in vivo anti-tumor activity against solid cancers and its in vitro anti-Multiple Myeloma (MM) activity has been previously reported. However, the molecular mechanisms are still unclear. Here we have investigated molecular changes induced by VPA as well as its in vivo activity in murine models of MM. We first studied the in vitro activity of VPA against IL-6 independent as well as IL-6 dependent MM cells. A time- and dose-dependent decrease in proliferation and survival of MM cell lines was observed (IC50 in the range of 1–3 mM). Gene expression profile following treatment with VPA at 2 and 5 mM showed down-regulation of genes involved in cell cycle regulation, DNA replication and transcription as well as up-regulation of genes implicated in apoptosis and chemokine pathways. The signaling pathway analysis performed by Ingenuity Systems Software identified the cell growth, cell cycle, cell death as well as DNA replication and repair as the most important networks modulated by VPA treatment. We next evaluated the in vivo activity of VPA using two xenograft models of human MM. A cohort of SCID mice bearing subcutaneous MM1s or OPM1 were treated i.p. daily with VPA (200 mg/kg, and 300 mg/kg, n=5 mice, respectively), or vehicle alone (n=5 mice) for 16 consecutive days. Tumors were measured every 2 days, and survival was calculated using the Kaplan Mayer method. Following VPA treatment, we found a significant (p=0.006) inhibition of tumor growth in mice bearing subcutaneous MM-1s cells treated with VPA at 200 mg/kg compared to control group, which translated into a significant (p= 0.002) survival advantage in the VPA treated animals. Similar results were obtained in animals bearing subcutaneous OPM1 cells. Flow cytometry analysis performed on retrieved tumor tissues from animals showed reduction of G2-M and S phase in tumor specimens following VPA treatment, versus untreated tumors, strongly suggesting in vivo effects of VPA on cell cycle regulation. Taken together, our data demonstrate the in vitro and in vivo anti-tumor activity of VPA, delineate potential molecular targets triggered by this agent and provide a preclinical rationale for its clinical evaluation, both as a single agent or in combination, to improve patient outcome in MM.


2008 ◽  
Vol 18 (5) ◽  
pp. 706-716 ◽  
Author(s):  
M. P. Keller ◽  
Y. Choi ◽  
P. Wang ◽  
D. Belt Davis ◽  
M. E. Rabaglia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document