New Aspects of Cytosloic Calcium Signaling

Physiology ◽  
1996 ◽  
Vol 11 (1) ◽  
pp. 13-17 ◽  
Author(s):  
OH Petersen

Hormone- or neurotransmitter-evoked cytosolic Ca2+ signals are generally thought to be initiated by an increase in inositol trisphosphate (IP3) concentration that in turn opens Ca2+ release channels in the endoplasmic reticulum. Recent data challenge this simple model and indicate IP3 receptors in several organelles and an additional intracellular messenger system for Ca2+ regulation.

2001 ◽  
Vol 359 (2) ◽  
pp. 435-441 ◽  
Author(s):  
Jane E. SWATTON ◽  
Stephen A. MORRIS ◽  
Frank WISSING ◽  
Colin W. TAYLOR

The functional properties of the only inositol trisphosphate (IP3) receptor subtype expressed in Drosophila were examined in permeabilized S2 cells. The IP3 receptors of S2 cells bound (1,4,5)IP3 with high affinity (Kd = 8.5±1.1nM), mediated positively co-operative Ca2+ release from a thapsigargin-sensitive Ca2+ store (EC50 = 75±4nM, Hill coefficient = 2.1±0.2), and they were recognized by an antiserum to a peptide conserved in all IP3 receptor subtypes in the same way as mammalian IP3 receptors. As with mammalian IP3 receptors, (2,4,5)IP3 (EC50 = 2.3±0.3μM) and (4,5)IP2 (EC50 approx. 10μM) were approx. 20- and 100-fold less potent than (1,4,5)IP3. Adenophostin A, which is typically approx. 10-fold more potent than IP3 at mammalian IP3 receptors, was 46-fold more potent than IP3 in S2 cells (EC50 = 1.67±0.07nM). Responses to submaximal concentrations of IP3 were quantal and IP3-evoked Ca2+ release was biphasically regulated by cytosolic Ca2+. Using rapid superfusion to examine the kinetics of IP3-evoked Ca2+ release from S2 cells, we established that IP3 (10μM) maximally activated Drosophila IP3 receptors within 400ms. The activity of the receptors then slowly decayed (t1/2 = 2.03±0.07s) to a stable state which had 47±1% of the activity of the maximally active state. We conclude that the single subtype of IP3 receptor expressed in Drosophila has similar functional properties to mammalian IP3 receptors and that analyses of IP3 receptor function in this genetically tractable organism are therefore likely to contribute to understanding the roles of mammalian IP3 receptors.


2020 ◽  
Vol 17 ◽  
pp. 234-242 ◽  
Author(s):  
Nutan Sharma ◽  
Samriddhi Arora ◽  
Suman Saurav ◽  
Rajender K Motiani

2016 ◽  
pp. 53-62 ◽  
Author(s):  
Y. M. AL SULEIMANI ◽  
C. R. HILEY

The lipid molecule, lysophosphatidylinositol (LPI), is hypothesised to form part of a novel lipid signalling system that involves the G protein-coupled receptor GPR55 and distinct intracellular signalling cascades in endothelial cells. This work aimed to study the possible mechanisms involved in LPI-evoked cytosolic Ca2+ mobilization in human brain microvascular endothelial cells. Changes in intracellular Ca2+ concentrations were measured using cell population Ca2+ assay. LPI evoked biphasic elevation of intracellular calcium concentration, a rapid phase and a sustained phase. The rapid phase was attenuated by the inhibitor of PLC (U 73122), inhibitor of IP3 receptors, 2-APB and the depletor of endoplasmic reticulum Ca2+ store, thapsigargin. The sustained phase, on the other hand, was enhanced by U 73122 and abolished by the RhoA kinase inhibitor, Y-27632. In conclusion, the Ca2+ signal evoked by LPI is characterised by a rapid phase of Ca2+ release from the endoplasmic reticulum, and requires activation of the PLC-IP3 signalling pathway. The sustained phase mainly depends on RhoA kinase activation. LPI acts as novel lipid signalling molecule in endothelial cells, and elevation of cytosolic Ca2+ triggered by it may present an important intracellular message required in gene expression and controlling of vascular tone.


Cell Calcium ◽  
2009 ◽  
Vol 46 (4) ◽  
pp. 273-281 ◽  
Author(s):  
Asier Ruiz ◽  
Carlos Matute ◽  
Elena Alberdi

2020 ◽  
Vol 21 (16) ◽  
pp. 5604 ◽  
Author(s):  
Achille Schild ◽  
Rajesh Bhardwaj ◽  
Nicolas Wenger ◽  
Dominic Tscherrig ◽  
Palanivel Kandasamy ◽  
...  

Calcium ions regulate a wide array of physiological functions including cell differentiation, proliferation, muscle contraction, neurotransmission, and fertilization. The endoplasmic reticulum (ER) is the major intracellular Ca2+ store and cellular events that induce ER store depletion (e.g., activation of inositol 1,4,5-triphosphate (IP3) receptors) trigger a refilling process known as store-operated calcium entry (SOCE). It requires the intricate interaction between the Ca2+ sensing stromal interaction molecules (STIM) located in the ER membrane and the channel forming Orai proteins in the plasma membrane (PM). The resulting active STIM/Orai complexes form highly selective Ca2+ channels that facilitate a measurable Ca2+ influx into the cytosol followed by successive refilling of the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). STIM and Orai have attracted significant therapeutic interest, as enhanced SOCE has been associated with several cancers, and mutations in STIM and Orai have been linked to immunodeficiency, autoimmune, and muscular diseases. 2-Aminoethyl diphenylborinate (2-APB) is a known modulator and depending on its concentration can inhibit or enhance SOCE. We have synthesized several novel derivatives of 2-APB, introducing halogen and other small substituents systematically on each position of one of the phenyl rings. Using a fluorometric imaging plate reader (FLIPR) Tetra-based calcium imaging assay we have studied how these structural changes of 2-APB affect the SOCE modulation activity at different compound concentrations in MDA-MB-231 breast cancer cells. We have discovered 2-APB derivatives that block SOCE at low concentrations, at which 2-APB usually enhances SOCE.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Alicia C. Strtak ◽  
Jacob L. Perry ◽  
Mark N. Sharp ◽  
Alexandra L. Chang-Graham ◽  
Tibor Farkas ◽  
...  

ABSTRACT Enteric viruses in the Caliciviridae family cause acute gastroenteritis in humans and animals, but the cellular processes needed for virus replication and disease remain unknown. A common strategy among enteric viruses, including rotaviruses and enteroviruses, is to encode a viral ion channel (i.e., viroporin) that is targeted to the endoplasmic reticulum (ER) and disrupts host calcium (Ca2+) homeostasis. Previous reports have demonstrated genetic and functional similarities between the nonstructural proteins of caliciviruses and enteroviruses, including the calicivirus NS1-2 protein and the 2B viroporin of enteroviruses. However, it is unknown whether caliciviruses alter Ca2+ homeostasis for virus replication or whether the NS1-2 protein has viroporin activity like its enterovirus counterpart. To address these questions, we used Tulane virus (TV), a rhesus enteric calicivirus, to examine Ca2+ signaling during infection and determine whether NS1-2 has viroporin activity that disrupts Ca2+ homeostasis. We found that TV increases Ca2+ signaling during infection and that increased cytoplasmic Ca2+ levels are important for efficient replication. Further, TV NS1-2 localizes to the endoplasmic reticulum, the predominant intracellular Ca2+ store, and the NS2 region has characteristics of a viroporin domain (VPD). NS1-2 had viroporin activity in a classic bacterial functional assay and caused aberrant Ca2+ signaling when expressed in mammalian cells, but truncation of the VPD abrogated these activities. Together, our data provide new mechanistic insights into the function of the NS2 region of NS1-2 and support the premise that enteric viruses, including those within Caliciviridae, exploit host Ca2+ signaling to facilitate their replication. IMPORTANCE Tulane virus is one of many enteric caliciviruses that cause acute gastroenteritis and diarrheal disease. Globally, enteric caliciviruses affect both humans and animals and amass >65 billion dollars per year in treatment and health care-associated costs, thus imposing an enormous economic burden. Recent progress has resulted in several cultivation systems (B cells, enteroids, and zebrafish larvae) to study human noroviruses, but mechanistic insights into the viral factors and host pathways important for enteric calicivirus replication and infection are still largely lacking. Here, we used Tulane virus, a calicivirus that is biologically similar to human noroviruses and can be cultivated by conventional cell culture, to identify and functionally validate NS1-2 as an enteric calicivirus viroporin. Viroporin-mediated calcium signaling may be a broadly utilized pathway for enteric virus replication, and its existence within caliciviruses provides a novel approach to developing antivirals and comprehensive therapeutics for enteric calicivirus diarrheal disease outbreaks.


Sign in / Sign up

Export Citation Format

Share Document