Molecular Features of Energy Coupling in the F0F1 ATP Synthase

Physiology ◽  
1999 ◽  
Vol 14 (1) ◽  
pp. 40-46
Author(s):  
Robert K. Nakamoto

H+ translocation is coupled to ATP synthesis in the F0F1 ATP synthase via a rotary mechanism. Catalytic turnover, site-site cooperativity, and H+ transport obligatorily involve rotation of a set of subunits. The transport domain in the membranous F0 and the catalytic domain in the F1 are mechanisms designed for generating torque.

1997 ◽  
Vol 243 (1-2) ◽  
pp. 336-343 ◽  
Author(s):  
Carsten Etzold ◽  
Gabriele Deckers-Hebestreit ◽  
Karlheinz Altendorf

2019 ◽  
Vol 116 (10) ◽  
pp. 4206-4211 ◽  
Author(s):  
Alice Tianbu Zhang ◽  
Martin G. Montgomery ◽  
Andrew G. W. Leslie ◽  
Gregory M. Cook ◽  
John E. Walker

The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined fromMycobacterium smegmatiswhich hydrolyzes ATP very poorly. The structure of the α3β3-component of the catalytic domain is similar to those in active F1-ATPases inEscherichia coliandGeobacillus stearothermophilus. However, its ε-subunit differs from those in these two active bacterial F1-ATPases as an ATP molecule is not bound to the two α-helices forming its C-terminal domain, probably because they are shorter than those in active enzymes and they lack an amino acid that contributes to the ATP binding site in active enzymes. InE. coliandG. stearothermophilus, the α-helices adopt an “up” state where the α-helices enter the α3β3-domain and prevent the rotor from turning. The mycobacterial F1-ATPase is most similar to the F1-ATPase fromCaldalkalibacillus thermarum, which also hydrolyzes ATP poorly. The βE-subunits in both enzymes are in the usual “open” conformation but appear to be occupied uniquely by the combination of an adenosine 5′-diphosphate molecule with no magnesium ion plus phosphate. This occupation is consistent with the finding that their rotors have been arrested at the same point in their rotary catalytic cycles. These bound hydrolytic products are probably the basis of the inhibition of ATP hydrolysis. It can be envisaged that specific as yet unidentified small molecules might bind to the F1domain inMycobacterium tuberculosis, prevent ATP synthesis, and inhibit the growth of the pathogen.


1985 ◽  
Vol 230 (2) ◽  
pp. 543-549 ◽  
Author(s):  
R L Van der Bend ◽  
J Petersen ◽  
J A Berden ◽  
K Van Dam ◽  
H V Westerhoff

In intact systems (chloroplasts, mitochondria and bacteria) many experiments have been reported which are indicative of localized coupling between ATP synthase and electron transfer complexes. We have carried out similar experiments with a system in which we may assume that specific interactions between the proton pumps are absent: reconstituted vesicles containing bacteriorhodopsin and yeast mitochondrial ATP synthase. The only experiment that gives results which differ from those previously published for intact systems concerns the effect of uncouplers on the rate of ATP synthesis at different levels of inhibition of the ATP synthase. We propose that this type of experiment may discriminate between localized and delocalized coupling.


1998 ◽  
Vol 330 (2) ◽  
pp. 707-712 ◽  
Author(s):  
J. Christian KETCHUM ◽  
Marwan K. AL-SHAWI ◽  
K. Robert NAKAMOTO

We previously demonstrated that the Escherichia coli F0F1-ATP synthase mutation, γM23K, caused increased energy of interaction between γ- and β-subunits which was correlated to inefficient coupling between catalysis and transport [Al-Shawi, Ketchum and Nakamoto (1997) J. Biol. Chem. 272, 2300-2306]. Based on these results and the X-ray crystallographic structure of bovine F1-ATPase [Abrahams, Leslie, Lutter and Walker (1994) Nature (London) 370, 621-628] γM23K is believed to form an ionized hydrogen bond with βGlu-381 in the conserved β380DELSEED386 segment. In this report, we further test the role of γ-β-subunit interactions by introducing a series of substitutions for βGlu-381 and γArg-242, the residue which forms a hydrogen bond with βGlu-381 in the wild-type enzyme. βE381A, D, and Q were able to restore efficient coupling when co-expressed with γM23K. All three mutations reversed the increased transition state thermodynamic parameters for steady state ATP hydrolysis caused by γM23K. βE381K by itself caused inefficient coupling, but opposite from the effect of γM23K, the transition state thermodynamic parameters were lower than wild-type. These results suggest that the βE381K mutation perturbs the γ-β-subunit interaction and the local conformation of the β380DELSEED386 segment in a specific way that disrupts the communication of coupling information between transport and catalysis. βE381A, L, K, and R, and γR242L and E mutations perturbed enzyme assembly and stability to varying degrees. These results provide functional evidence that the β380DELSEED386 segment and its interactions with the γ-subunit are involved in the mechanism of coupling.


1998 ◽  
Vol 273 (2) ◽  
pp. 865-870 ◽  
Author(s):  
Dirk Bald ◽  
Toyoki Amano ◽  
Eiro Muneyuki ◽  
Bruno Pitard ◽  
Jean-Louis Rigaud ◽  
...  

2017 ◽  
Vol 114 (34) ◽  
pp. 9086-9091 ◽  
Author(s):  
Jiuya He ◽  
Joe Carroll ◽  
Shujing Ding ◽  
Ian M. Fearnley ◽  
John E. Walker

The opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membranes of mitochondria can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane and ATP synthesis, and cell death. Pore opening can be inhibited by cyclosporin A mediated via cyclophilin D. It has been proposed that the pore is associated with the dimeric ATP synthase and the oligomycin sensitivity conferral protein (OSCP), a component of the enzyme’s peripheral stalk, provides the site at which cyclophilin D interacts. Subunit b contributes a central α-helical structure to the peripheral stalk, extending from near the top of the enzyme’s catalytic domain and crossing the membrane domain of the enzyme via two α-helices. We investigated the possible involvement of the subunit b and the OSCP in the PTP by generating clonal cells, HAP1-Δb and HAP1-ΔOSCP, lacking the membrane domain of subunit b or the OSCP, respectively, in which the corresponding genes, ATP5F1 and ATP5O, had been disrupted. Both cell lines preserve the characteristic properties of the PTP; therefore, the membrane domain of subunit b does not contribute to the PTP, and the OSCP does not provide the site of interaction with cyclophilin D. The membrane subunits ATP6, ATP8, and subunit c have been eliminated previously from possible participation in the PTP; thus, the only subunits of ATP synthase that could participate in pore formation are e, f, g, diabetes-associated protein in insulin-sensitive tissues (DAPIT), and the 6.8-kDa proteolipid.


Sign in / Sign up

Export Citation Format

Share Document