X-ray diffraction analysis of lanthanum and titanium substituted lead zirconate

2002 ◽  
Vol 17 (4) ◽  
pp. 295-300 ◽  
Author(s):  
Nichole Wonderling ◽  
Else Breval ◽  
Joseph P. Dougherty

The change in the orthorhombic structure of PbZrO3 was studied as a function of the La substitution for Pb and Ti substitution for Zr. Two types of changes can occur: (1) a change in the atom coordinates toward the positions for a perfect cubic perovskite lattice; and (2) a change of orthorhombic unit cell parameters so that ao, bo, and co exactly fit with the cubic cell parameter ac. Therefore, ao=ac√2, bo=ac.2√2, and co=ac.2, where ao, bo, and co are the orthorhombic cell parameters, and ac is the cubic cell parameter. Substitution of Pb by La in the orthorhombic PLZT leads to both a change in atom coordinates and a change in unit cell parameters toward the perfect cubic structure, especially for La≥4. Substitution of Zr by Ti in the orthorhombic PLZT leads to similar atom coordinate changes, but the unit cell parameters do not change. The composition 0/92.5/7.5 contains a major tetragonal phase and a minor orthorhombic phase. There are only small differences in the orthorhombic structure between the A and the B composition of PLZT. The A composition has a structure closer to the cubic structure than the B composition.

2018 ◽  
Vol 82 (2) ◽  
pp. 347-365 ◽  
Author(s):  
Serena C. Tarantino ◽  
Michele Zema ◽  
Athos M. Callegari ◽  
Massimo Boiocchi ◽  
Michael A. Carpenter

ABSTRACTA natural olivenite single crystal was submitted to in situ high-temperature single-crystal X-ray diffraction from room temperature (RT) to 500°C. Unit-cell parameters were measured at regular intervals of 25°C, and complete datasets collected at T = 25, 50, 100, 150, 200, 250, 300, 400 and 500°C. Evolution of unit-cell parameters and structure refinements indicates that olivenite undergoes a structural phase transition from P21/n to Pnnm at ~200°C, and eventually becomes isostructural with the other members of the olivenite-mineral group. Volume expansion with temperature is larger in the monoclinic phase – where it follows a non-linear trend – than in the orthorhombic one. Axial and volume expansion coefficients of the orthorhombic olivenite phase are positive and linear and similar to those of the other Cu-bearing member of the mineral family, namely libethenite, but rather different from those of the Zn-analogue arsenate adamite.Distortion of Cu polyhedra is quite high in the olivenite monoclinic phase at RT and goes towards a relative regularization with increasing T until the phase transition occurs. In the orthorhombic phase, no significant variation of the polyhedral distortion parameters is observed with increasing temperature, and maximum expansion is along the b direction and governed by corner-sharing. Landau potential provides a good representation of the macroscopic changes associated with the phase transition, coupling between the strains and the order parameter is responsible for the nearly tricritical character of the transition.


1987 ◽  
Vol 2 (4) ◽  
pp. 225-226
Author(s):  
Peter Bayliss ◽  
Slade St. J. Warne

AbstractMagnesium-chlorophoenicite may be differentiated from the Mn-analogue chlorophoenicite, because for magnesium-chlorophoenicite at 7Å, whereas for chlorophoenicite.In a review of the literature for the Mineral Powder Diffraction File by Bayliss et al. (1980), powder X-ray diffraction data could not be found of the mineral species magnesium-chlorophoenicite, (Mg,Mn)3Zn2(AsO4)(OH,O)6. Dunn (1981) states that the powder X-ray diffraction data of magnesium-chlorophoenicite is essentially identical to that of chlorophoenicite (Mn analogue) and confirms that the minerals are isostructural.With the crystal structure parameters determined by Moore (1968) for a Harvard University specimen from New Jersey of chlorophoenicite, a powder X-ray diffraction pattern was calculated with the programme of Langhof, Physikalische Chemie Institute, Darmstadt. The calculated pattern was used to correct and complete the indexing of the powder X-ray diffraction data of chlorophoenicite specimen ROM M15667 from Franklin, Sussex County, New Jersey, U.S.A. by the Royal Ontario Museum (PDF 25-1159). With the correctly indexed data of ROM M15667, the unitcell parameters were refined by least-squares analysis and are listed in Table 1.The most magnesium-rich magnesium-chlorophoenicite found in the literature is a description of Harvard University specimen 92803 from Franklin, Sussex County, New Jersey, U.S.A. by Dunn (1981), where Mg is slightly greater than Mn. A 114.6 mm Debye-Schemer film taken of HU92803 with Cu radiation and a Ni filter (CuKα = 1.5418Å) was obtained from Dr. P. Dunn and measured visually. The unit-cell parameters, which were refined by least-squares analysis starting from the unit-cell parameters of PDF 25-1159 in space group C2/m(#12), are listed in Table 1, and give F28 = 4.1(0.050,136) by the method of Smith & Snyder (1979).The hkl, dcalulated, dobserved and relative intensities (I/I1) of HU92803 are presented in Table 2. With the atomic positions and temperature factors of chlorophoenicite determined by Moore (1968), the Mn atomic positions occupied by 50% Mg and 50% Mn, and the unit-cell parameters of HU92803, a powder X-ray diffraction pattern was calculated and Icalculated is recorded in Table 2. A third powder X-ray diffraction pattern was calculated with the Mn atomic positions fully occupied by Mg. Because the atomic scattering factor of Mn is more than twice greater than Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the calculated intensities of the first three reflections given in Table 3.Although the a, c and β unit-cell parameters of chlorphoenicite are similar to those of magnesium-chlorphoenicite, the b unit-cell parameter of chlorophoenicite is significantly greater than that of magnesium-chlorophoenicite (Table 1). The b unit-cell parameter represents the 0–0 distance of the Mn octahedra (Moore, 1968). Since the size of Mn is greater than that of Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the b unit-cell parameter given in Table 1.American Museum of Natural History (New York, N.Y., U.S.A.) specimen 28942 from Sterling Hill, Ogdensburg, New Jersey is composed of willemite, haidingerite and magnesian chlorophoenicite. A spectrographic analysis of the magnesian chlorophoenicite shows As, Mg, Mn and Zn. Powder X-ray diffraction data (PDF 34-190) of the magnesian chlorophoenicite was collected by diffractometer with Cu radiation and a graphite 0002 monochromator (Kα1 = 1.5405) at a scanning speed of 0.125° 2θ per minute. The unit-cell parameters, which were refined by leastsquares analysis starting from the unit-cell parameters of PDF 25-1159, are given in Table 1. Specimen AM 28942 is called chlorophoenicite, because of its large b unit-cell parameter (Table 1), and the I/I1 of 25 for reflection 001 and of 50 for reflection 201 compared to the Icalculated in Table 3.


2020 ◽  
Vol 39 (2) ◽  
pp. 207
Author(s):  
Nikita V. Chukanov ◽  
Olga N. Kazheva ◽  
Nadezhda A. Chervonnaya ◽  
Dmitry A. Varlamov ◽  
Vera N. Ermolaeva ◽  
...  

Crystals of the natural zeolite amicite, ideally K4Na4(Al8Si8O32)·10H2O, were ion-exchanged in the reactions with 0.1 N aqueous solutions of AgNO3, RbNO3, CsNO3 and Pb(NO3)2 at 363 K for 24 h. Under these conditions, Cs+ substitutes K+ whereas the most part of Na+ remains unexchanged; Rb+ partly substitutes both Na+ and K+; Pb2+ and Ag+ completely substitute Na+ and K+. All the compounds are monoclinic. The Cs- and Rb-substituted samples have unit-cell parameters close to those of initial amicite. The exchange of Na+ and K+ for Ag+ is accompanied by a significant decrease of the unit-cell volume. The unit-cell parameter c of Pb-amicite is nearly threefold larger than the c parameter of initial amicite. Infrared spectra show that framework topology is preserved during the ion exchange. The crystal structures of initial and Cs-exchanged amicites have been solved by direct methods.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Ross Angel ◽  
Mattia Mazzucchelli ◽  
Javier Gonzalez-Platas ◽  
Matteo Alvaro

A method for the self-consistent description of the large variations of unit-cell parameters of crystals with pressure and temperature is presented. It employs linearized versions of equations of state (EoSs) together with constraints to ensure internal consistency. The use of polynomial functions to describe the variation of the unit-cell angles in monoclinic and triclinic crystals is compared with the method of deriving them from linearized EoSs for d spacings. The methods have been implemented in the CrysFML Fortran subroutine library. The unit-cell parameters and the compressibility and thermal expansion tensors of crystals can be calculated from the linearized EoSs in an internally consistent manner in a new utility in the EosFit7c program, which is available as freeware at http://www.rossangel.net.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 812
Author(s):  
Noura Othman Alzamil ◽  
Ghareeba Mussad Al-Enzi ◽  
Aishah Hassan Alamri ◽  
Insaf Abdi ◽  
Amor BenAli

Two new nonmetal cation tetrafluoroborate phases [H3tren](BF4)3 (I) and [H3tren](BF4)3 HF (II) were synthesized by microwave-assisted solvothermal and characterized by single crystal X-ray diffraction, IR spectroscopy and thermal analysis DTA-TGA. [H3tren](BF4)3 is cubic (P213) with unit cell parameter a = 11.688(1) Å. [H3tren](BF4)3•HF is trigonal (R3c) with unit cell parameters a = 15.297(6) Å and c = 12.007(2) Å. Both (I) and (II) structures can be described from isolated tetrafluoroborate BF4- anions, triprotonated tris-(2-aminoethyl)amine (tren) [H3tren]3+. Phase (II) contains disordered BF4- tetrahedron and hydrofluoric acid.


1994 ◽  
Vol 9 (2) ◽  
pp. 143-145 ◽  
Author(s):  
D. E. McCready ◽  
J. J. Kingsley

Standardized X-ray powder diffraction data for orthorhombic LaCo0.4Fe0.6O3 prepared by calcination of a glycine-nitrate combustion-synthesized precursor are reported. Orthorhombic unit cell parameters: a = 5.4688 (2), b = 5.5100 (2), c = 7.7462 (3) Å. The reference intensity ratio, I/Icor,= 6.12.


2017 ◽  
Vol 50 (2) ◽  
pp. 385-398 ◽  
Author(s):  
Lukáš Horák ◽  
Dominik Kriegner ◽  
Jian Liu ◽  
Carlos Frontera ◽  
Xavier Marti ◽  
...  

A high-pressure metastable orthorhombic phase of SrIrO3 perovskite has been epitaxially stabilized on several substrates (DyScO3, GdScO3, NdScO3 and SrTiO3) in the form of thin monocrystalline layers with (110) surface orientation. The unit-cell parameters of the pseudomorphic thin SrIrO3 layers depend on the biaxial strain imposed by the various substrates due to the different lattice mismatches of the particular substrate and the bulk orthorhombic SrIrO3 structure. Using X-ray diffractometry, it is shown that both compressive and tensile strain increase the lattice parameters a and b, while the angle γ scales with the applied strain, being smaller or larger than 90° for compressive or tensile strain, respectively, resulting in a small monoclinic distortion of the layer unit cell. Owing to the similarity of the substrate and layer lattices, the diffraction signals from the two structures overlap partially, which complicates structure determination by standard refinement methods using measured integrated intensities. The measured signal is composed of two interfering components corresponding to the waves diffracted by the substrate and by the layer, where the first component is calculated exactly using the known substrate structure, while the second one is determined by the unknown unit-cell parameters of the layer. The unit-cell parameters were refined in order to fit the experimental data with the simulation. The fractional coordinates of the atoms in the unit cell resulting from the fit are similar to those in the bulk structure.


Inorganics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Christian Bäucker ◽  
Peter Becker ◽  
Keshia J. Morell ◽  
Rainer Niewa

Two new modifications of the pentafluoridoaluminate K2AlF5 were obtained from ammonothermal synthesis at 753 K, 224 MPa and 773 K, 220 MPa, respectively. Both crystallize in the orthorhombic space group type Pbcn, with close metric relations and feature kinked chains of cis-vertex-connected AlF6 octahedra resulting in the Niggli formula ∞1{[AlF2/2eF4/1t]2−}. The differences lie in the number of octahedra necessary for repetition within the chains, which for K2AlF5-2 is realized after four and for K2AlF5-3 after eight octahedra. As a result, the orthorhombic unit cell for K2AlF5-3 is doubled in chain prolongation direction [001] as compared to K2AlF5-2 (1971.18(4) pm versus 988.45(3) pm, respectively), while the unit cell parameters within the other two directions are virtually identical. Moreover, the new elpasolite Rb2KAlF6 is reported, crystallizing in the cubic space group Fm3¯m with a = 868.9(1) pm and obtained under ammonothermal conditions at 723 K and 152 MPa.


1991 ◽  
Vol 35 (A) ◽  
pp. 431-438
Author(s):  
Hideo Toraya ◽  
William Parrish

AbstractA procedure for the accurate determination of unit-cell parameters using conventional Xray powder diffractometry is described. Two important factors in the procedure are: 1) the use of high-resolution-type diffractometer, which can suppress the axial beam divergence and thus gives nearly symmetric diffraction profiles in the low 2θ region and 2) the use of a new algorithm for systematic peak shift correction during the least-squares determination of unit-cell parameters of a sample with an internal standard [Toraya & Kitamura (1990). J. Appl. Cryst. 23 , 282-285]. The procedure has been tested by measuring successively the unit-cell parameter of W, CeO2, and Si in three mixtures, Si+W, W+CeO2, and CeO2+Si: the unit-cell parameter of W, which was first determined by using NIST SRM 640b Si powder as an internal standard reference material, was used as a standard reference value to determine the unit-cell parameter of CeO; in the next W+CeO2 mixture, and so on. The difference between the end value of observed Si unit-cell parameters and the starting value of 5.430940(35) Å were just 1 to 5 p.p.m. High accuracy is attainable in measuring the uni-cell parameters even with the conventional powder diffractometry provided with the nearly symmetric diffraction profile and the algorithm for peak shift correction used in the present study.


2019 ◽  
Vol 234 (6) ◽  
pp. 383-393
Author(s):  
Fabrice Dal Bo ◽  
Sergey M. Aksenov ◽  
Peter C. Burns

Abstract A novel hydrated magnesium uranyl germanate, Mg[(UO2)2(Ge2O6(OH)2)]·(H2O)4.4, has been synthesized under hydrothermal conditions at 200 °C. The orthorhombic unit-cell parameters are a=10.829(6), b=7.625(4), c=16.888(10) Å, V=1394.5(1) Å3, space group Cmcm, Z=4. The crystal structure is based on β-U3O8-type sheets of corner- and edge-sharing U6+O7 pentagonal bipyramids. The GeO3(OH) tetrahedra and GeO4(OH) trigonal bipyramids are linked to form [Ge2φ8] diortho groups that fill the hexagonal-shaped windows within the sheets. The uranyl germanate layers are connected through Mgφ6 octahedra. The disorder of the [Ge2φ8] diortho groups leads to different local structure types with layered- and framework-like characters. A review of the crystal structures of uranyl minerals and actinide-bearing synthetic compounds based on β-U3O8 topological-type sheets is provided. Structural complexity parameters (IG,total=176.19 bits/unit cell) indicate that the title compound is one of the simplest actinyl compounds among this family.


Sign in / Sign up

Export Citation Format

Share Document