Chemical preparation and crystal data for two hydrated cyclotriphosphates SrMIP3O9⋅3H2O and their corresponding anhydrous SrMIP3O9 (MI=K+ and Tl+)

2003 ◽  
Vol 18 (3) ◽  
pp. 233-235 ◽  
Author(s):  
Kacem Sbai ◽  
Khadija El Kababi ◽  
Saïd Belaaouad

Methods of chemical preparation and crystal data are reported for four new condensed phosphates: two hydrated cyclotriphosphates with a general formula SrMIP3O9⋅3H2O (MI=K+,Tl+) and their corresponding anhydrous cyclotriphosphates SrMIP3O9 (MI=K+,Tl+). The two hydrated condensed phosphates, SrKP3O9⋅3H2O and SrTlP3O9⋅3H2O, belong to previously investigated structure types. SrKP3O9⋅3H2O and SrTlP3O9⋅3H2O are orthorhombic, Z=4, space group Pnma, with respectively the following unit-cell dimensions: a=9.082(2) Å, b=8.133(2) Å, c=15.009(2) Å, M(20)=49, F(25)=61(0.0052;79) and a=9.115(7) Å, b=8.139(7) Å, c=15.221(2) Å, M(20)=285, F(30)=522(0.000 411;140). SrKP3O9 and SrTlP3O9 are monoclinic, space group P21/m or P21, Z=4, with, respectively, the following unit-cell dimensions: a=14.957(1) Å, b=8.372(1) Å, c=7.909(1) Å, β=102.27(1)°, M(20)=81, F(24)=95(0.000 025;92) and a=14.544(2) Å, b=8.639(1) Å, c=7.727(1) Å, β=102.05(1)°, M(20)=66, F(30)=78(0.003 098;125).

2004 ◽  
Vol 19 (4) ◽  
pp. 375-377 ◽  
Author(s):  
Kacem Sbai ◽  
Said Belaaouad ◽  
Abdelkebir Kenz ◽  
El Mostafa Tace ◽  
Malika Tridane

Methods of chemical preparation and crystallographic data are reported for two new condensed phosphates: a polyphosphate of nickel and cesium, NiCs4(PO3)6, and a cyclotriphosphate of nickel and potassium, NiK4(P3O9)2. NiCs4(PO3)6 is rhombohedral with the following unit-cell dimensions: a=b=11.602(1) Å, c=9.078(1) Å, space group P−31c, V=1058.24(1) Å3, and Z=2. NiK4(P3O9)2 is triclinic with the following unit-cell dimensions: a=6.143(8) Å, b=6.80(1) Å, c=12.80(3) Å, α=102.8(3)°, β=89.7(2)°, γ=66.03(7)°, space group P−1, V=473.56(3) Å3, and Z=1.


2002 ◽  
Vol 17 (1) ◽  
pp. 23-24 ◽  
Author(s):  
S. Belaaouad ◽  
K. Sbai

Methods of chemical preparation and crystallographic data are reported for two new condensed phosphates: a hydrated cyclotriphosphate with a formula MnNa4(P3O9)2 4H2O and its anhydrous form MnNa4(P3O9)2. MnNa4(P3O9)2 4H2O is monoclinic P21/a with the following unit-cell dimensions: a=8.536(2) Å, b=14.309(3) Å, c=8.508(2) Å, β=96.452(2)°, and Z=2. MnNa4(P3O9)2 is monoclinic C2/c with the following unit-cell dimensions: a=13.198(2) Å, b=8.241(1) Å, c=14.228(2) Å, β=95.045(1)°, and Z=4.


2003 ◽  
Vol 18 (3) ◽  
pp. 224-226 ◽  
Author(s):  
Kacem Sbai ◽  
Malika Tridane ◽  
Ali Abouimrane ◽  
Saïd Belaaouad ◽  
Abdelouahed Cherqaoui

Methods of chemical preparation and crystal data are reported for two new anhydrous cyclotriphosphates MIIK4(P3O9)2 (MII=Co2+ and Mn2+). These anhydrous cyclotriphosphates CoK4(P3O9)2 and MnK4(P3O9)2 were obtained by total dehydration of corresponding hydrated cyclotriphosphates CoK4(P3O9)2.7H2O and MnK4(P3O9)2.2H2O. CoK4(P3O9)2 is triclinic, space group P−1, Z=1 with the following unit-cell dimensions: a=6.29(3) Å, b=8.00(1)Å, c=13.05(8)Å, α=86.03(5)°, β=98.00(1)°, γ=68.11(2)°. MnK4(P3O9)2 crystallizes in the rhombohedral system, space group P−31c, Z=2 with the following unit-cell dimensions: a=b=7.337(3)Å, c=19.920(1)Å.


1996 ◽  
Vol 11 (4) ◽  
pp. 301-304
Author(s):  
Héctor Novoa de Armas ◽  
Rolando González Hernández ◽  
José Antonio Henao Martínez ◽  
Ramón Poméz Hernández

p-nitrophenol, C6H5NO3, and disophenol, C6H3I2NO3, have been investigated by means of X-ray powder diffraction. The unit cell dimensions were determined from diffractometer methods, using monochromatic CuKα1 radiation, and evaluated by indexing programs. The monoclinic cell found for p-nitrophenol was a=6.159(2) Å, b=8.890(2) Å, c=11.770(2) Å, β=103.04(2)°, Z=4, space group P21 or P2l/m, Dx=1.469 Mg/m3. The monoclinic cell found for disophenol has the dimensions a=8.886(1) Å, b=14.088(2) Å, c=8.521(1) Å, β=91.11(1)°, Z=4, space group P2, P2, Pm or P2/m, Dx=2.438 Mg/m3.


1976 ◽  
Vol 54 (17) ◽  
pp. 2723-2732 ◽  
Author(s):  
Simon E. V. Phillips ◽  
James Trotter

The structures of the title compounds have been determined by three dimensional X-ray crystal structure analysis.Crystals of anhydrous phenacylkojate are monoclinic, space group P21/c, with unit cell dimensions a = 9.087(4), b = 11.764(3), c = 12.714(4) Å, β = 116.57(2)°, Z = 4. The structure was solved by direct methods and refined by full-matrix least-squares to R = 0.044 for 1225 independent diffractometer observations. The crystal structure is held together by hydrogen bonding between carbonyl and hydroxyl groups and [Formula: see text] interactions.Crystals of the sodium chloride complex are monoclinic, space group C2/c, with unit cell dimensions a = 11.3714(6), b = 15.796(1), c = 14.487(1) Å, β = 97.241(5)°, Z = 4. The structure was solved by heavy atom and Fourier methods and comparison with the previously determined structure of the potassium iodide complex. It was refined to R = 0.040 for 1670 independent diffractometer observations. The structure closely resembles that of the potassium iodide complex (P21/n), but in C2/c, the alkali metal ion being eight co-ordinate in each. Na+—O distances are in the range 2.558–2.674 Å and the [Formula: see text] hydrogen bonded distance is 3.266 Å.


1977 ◽  
Vol 55 (1) ◽  
pp. 111-114 ◽  
Author(s):  
Lillian Y. Y. Chan ◽  
E. E. Isaacs ◽  
W. A. G. Graham

Reaction of [n-Bu4N]2[Re4(CO)16] with AgBF4 in acetonitrile affords the compound [(CH3CN)3Re(CO)3][BF4]. The latter crystallizes in monoclinic space group P21/c with unit cell dimensions a = 11.021(5) Å, b = 11.136(5) Å, c = 12.980(6) Å, β = 96.906(25)°, and four molecules per unit cell. Data were collected by counter methods and the structure was refined using least-squares procedures to give R = 0.041. The rhenium cation is approximately octahedrally coordinated by six facially arranged ligands. The mean rhenium–nitrogen distance is 2.13 Å, and the mean rhenium–nitrogen–carbon angle in the coordinated acetonitrile is 174.7°.


1983 ◽  
Vol 16 (1) ◽  
pp. 142-143 ◽  
Author(s):  
A. Ben Salah

Bis(monomethylammonium) tetrabromomercurate, (CH3NH3)2HgBr4, 2CH6N+.Hg2+.4Br−, is monoclinic, space group P21/c. Unit-cell dimensions are: a = 7.979(4), b = 13.351(4), c = 11.289(4) Å, β = 96.36(2)°, Z = 4, Dm = 3.25, Dx = 3.24 Mgm−3. The compound undergoes a phase transition at low temperature. The JCPDS Diffraction File No. of this compound is 33-1997.


Author(s):  
Richard L. Harlow ◽  
Allen G. Oliver ◽  
Jonathan M. Baker ◽  
William J. Marshall ◽  
Michael P. Sammes

The crystal structures of two crystalline phases of 1,4-dithiane 1,1,4,4-tetraoxide, C4H8O4S2, have been determined in order to examine the nature of possible intermolecular hydrogen bonds. Phase 1 is monoclinic, space group C2/m, with unit-cell dimensions of a = 9.073 (8), b = 7.077 (6), c = 5.597 (5) Å and β = 105.89 (1)°. The molecule adopts 2/m symmetry and all of the molecules are related by translation and thus have the same orientation. Phase 2 is also monoclinic but in space group P21/n with unit-cell dimensions of a = 7.1305 (5), b = 5.7245 (4), c = 8.3760 (6) Å and β = 91.138 (2)°. In this phase, the molecule sits on an inversion center and the molecules within the unit cell adopt quite different orientations. In both phases, examination of the potential C—H...O hydrogen bonds around each of the independent oxygen atoms (one axial and the other equatorial) shows the general O...H patterns to be quite similar with each oxygen atom in contact with four neighboring H atoms, and each H atom contacting two neighboring O atoms. While none of the H...O contacts is particularly short (all are greater than 2.5 Å), each molecule has 32 such contacts that form an extensive intermolecular network. A 1H NMR spectrum of the compound dissolved in DMSO shows a singlet of 8H at δ 3.677 which indicates that the C—H bonds are only moderately polarized by the single adjacent –SO2– moiety: strongly polarized C—H bonds have δ values in the 5–6 range [Li & Sammes (1983). J. Chem. Soc. Perkin Trans. 1, pp. 1303–1309]. The phase 1 crystal studied was non-merohedrally twinned.


1989 ◽  
Vol 44 (8) ◽  
pp. 990-992 ◽  
Author(s):  
Wolfgang Milius

The crystal structures of CuTe2Br and CuTe2I have been refined on the basis of single crystal data. Both compounds crystallize monoclinically in space group P21/c. The structures are isotypic with that of CuTe2Cl. The lattice parameters of CuTe2Br are a = 834.5(8) pm, b = 492.8(4) pm, c = 1573.3(5) pm and β = 135.3(2)°. The unit cell dimensions of CuTe2I are a = 866.5(8) pm, b = 491.4(4) pm, c = 1649.6(3) pm and β = 135.1(2)°.


2011 ◽  
Vol 26 (1) ◽  
pp. 78-81 ◽  
Author(s):  
I. Fahim ◽  
A. Kheïreddine ◽  
M. Tridane ◽  
S. Belaaouad

Methods of chemical preparation and XRD data are reported for a new triphosphate CuNa3P3O10 and two cyclotriphosphates SrRbP3O9·3H2O and SrRbP3O9. SrRbP3O9·3H2O was prepared by the method of ion-exchange resin, while CuNa3P3O10 and SrRbP3O9 were obtained by total dehydration of CuNa3P3O10·12H2O and SrRbP3O9·3H2O, respectively. CuNa3P3O10 crystallizes in the hexagonal system, with space group P-31c, Z=2, and the following unit-cell dimensions: a=b=7.022(1) Å, c=9.217(1) Å, M(20)=81, F(20)=117(0.003 419, 50), and V=393.24(2) Å3. SrRbP3O9·3H2O is orthorhombic, with Z=4, space group Pnma, and the following unit-cell dimensions: a=9.120(1) Å, b=8.141(1) Å, c=15.234(1) Å, M(20)=5.1, F(20)=5.8(0.0173,199), and V=1131.1(3) Å3. SrRbP3O9 is monoclinic, with space group P21/m or P21, Z=4, and the following unit-cell dimensions: a=14.958(3) Å, b=8.503(2) Å, c=7.898(2) Å, β=122.19(2)°, M(20)=9.9, F(20)=16.5(0.0189, 64), and V=850.2(8) Å3.


Sign in / Sign up

Export Citation Format

Share Document